

Videx BASIC

for

DuraTrax®, LaserLite®, LaserLite Pro, and

LaserLite Mx Data Collectors

Copyright © 1997–1999 by Videx, Inc.
All Rights Reserved

GCO#1088 MN-DTL-01

i

Notice:
Videx, Inc. reserves the right to make improvements or changes in the product
described in this manual at any time without notice.

Disclaimer of All Warranties and Liability:
Videx, Inc. makes no warranties, either expressed or implied except as explicitly
set forth in the Limited Warranty below, with respect to this manual nor with
respect to the product described in this manual, its quality, performance,
merchantability, or fitness for any purpose. Videx, Inc. software is sold or
licensed “as is.” The entire risk as to its quality and performance is with the
buyer. Should the programs prove defective following their purchase, the buyer
(and not Videx, Inc., its distributors, or its retailers) assumes the entire cost of all
necessary servicing, repair, or correction, and any incidental or consequential
damages. In no event will Videx, Inc. be liable for direct, indirect, incidental, or
consequential damages resulting from any defect or the possibility of such
damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

Limited Warranty:
Videx, Inc. warrants this product to be free from defects in material and
workmanship for a period of one (1) year from the date of original purchase.
Videx, Inc. agrees to repair or, at our option, replace any defective unit without
charge. Videx, Inc. assumes no responsibility for any special or consequential
damages. No other warranty, either expressed or implied, is authorized by Videx,
Inc. Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you.

Copyright Notice:
This manual is copyrighted. All rights are reserved. This document may not, in
whole or in part, be copied, photocopied, reproduced, translated, or reduced to
any electronic medium or machine-readable form without prior consent, in
writing, from Videx, Inc.

Copyright © 1997–1999 by Videx, Inc.
1105 NE Circle Blvd., Corvallis, Oregon 97330
Phone: (541) 758-0521 Fax: (541) 752-5285
www.videx.com • sales@videx.com • support@videx.com

Videx, DuraTrax, and LaserLite are registered trademarks of Videx, Inc.
Application Builder is a trademark of Videx, Inc. All other trademarks are
properties of their respective owners.

ii

Federal Communications Commission Statement: This equipment is a Class
A computing device under the U.S. FCC rules and this warning is required.

Warning: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. It has been tested and found
to comply with the limits for a Class A computing device pursuant to Subpart J of
Part 15 of FCC rules, which are designed to provide reasonable protection
against such interference when operated in a commercial environment.
Operation of this equipment in a residential area is likely to cause interference in
which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

If this equipment is operated from the same electrical wall circuit as other pieces
of equipment and erratic operation of the unit occurs, it may be necessary to
shut off other equipment or power the unit from a dedicated electrical circuit.

If this equipment has an FCC ID number affixed to the equipment, then the unit
meets the limits for a U.S. Federal Communications Commission Class B
computing device and the following information applies.

FCC Notice: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instruction manual,
may cause interference to radio and television reception. It has been type tested
and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC rules, which
are designed to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause interference to
radio or television reception, which can be determined by disconnecting and
reconnecting the equipment, the user is encouraged to try to correct the
interference by one or more of the following measures.
Reorient the receiving antenna.
Relocate the computer with respect to the receiver.
Move the computer away from the receiver.
Plug the computer into a different outlet so that computer and receiver are on
different branch circuits.

If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may find the
following booklet prepared by the Federal Communications Commission helpful:
“How to Identify and Resolve Radio-TV Interference Problems.”
This booklet is available from the U.S. Government Printing Office, Washington,
DC 20402, Stock No. 004-000-00345-4.

Table of Contents iii

Table of Contents

INTRODUCTION ..1

CHAPTER 1 ...3

VIDEX BASIC...3
Basic Program Line ...4
Using Line Identifiers...4
BASIC Statements ..5

CHAPTER 2 ...7

DATA TYPES ...7
Elementary Data Types—String...7
Elementary Data Types—Numeric...7

Integer Numbers... 8
CONSTANTS...9

Literal Constants..9
Symbolic Constants ..10

VARIABLES..10
Variable Names..11

Variable Types ... 12
Simple Variables .. 12
Array Variables .. 13

VIDEX BASIC MEMORY CONSIDERATIONS ..14

CHAPTER 3 ...15

EXPRESSIONS & OPERATORS ..15
Expressions and Operators ..15
Hierarchy of Operations ..16
Arithmetic Operators ...17

Modulo Arithmetic... 18
COMPARISON OPERATORS...19

Bitwise Operators ..20
String Operators ..22

Table of Contents iv

CHAPTER 4 ...25

STATEMENT & FUNCTION REFERENCE..25
ABS Function ...26
ASC Function ...27
BEEP Statement ...28
BIN Function..29
CARDCMD Statement (for LaserLite Mx only) ...32

CARDCMD Global Errors... 34
CARDCMD Statement Commands.. 34

File Types... 36
Notes on CARDCMD Statement Commands... 37
CARDCMD Statement Commands.. 39

CARDSTATUS Function (for LaserLite Mx only)..58
CHR$ Function ..63
CLOSE Statement...66
CLS Statement..67
COMMCLOSE Statement...68
COMMINPUT Statement ...69
COMMOPEN Statement ..71
COMMPRINT Statement..72
CONST Statement ..73
DATE$ Function ..76
DIM Statement ...78
DO...LOOP Statement..80
END Statement...83
ENVIRON$ Function ...84
EOF Function ..86
ERR Function...88
EXIT Statement ..89
FOR...NEXT Statement ..91

Nested Loops ... 93
GOSUB...RETURN Statement..94
GOTO Statement ..97
HEX$ Function ..99
IF...ELSEIF...ELSE...ENDIF Statement ..102
INKEY$ Function...105
INPUT$ Function...107
INPUTEVT Statement ..109
INSTR Function ...114
LCASE$ Function ..116
LEFT$ Function...117
LEN Function...119
LET Statement..120

Table of Contents v

LOCATE Statement ..122
LOF Function...123
LOF Statement ...126
LOFH Function..128
LOOK$ Function ...129
LOOKUP Function ..132
LTRIM$ Function...134
MID$ Function...136
MID$ Statement ...138
ON…GOSUB, ON...GOTO Statement ...139
OPEN Statement ..141
OPTION Function..142
OPTION Statement ..143

UPC/EAN Supplement Options... 150
PATTERN Function ...155
PRINT Statement..157
REM Statement...159
RIGHT$ Function ..160
RTRIM$ Function ..161
SEEK Function...162
SEEK Statement ...164
SEEKH Function..165
SGN Function...167
SLEEP Statement ...169
SOUND Statement..171
STR$ Function ...173
SWAP Statement...174
TIME$ Function...175
TOKEN$ Function ...178
TOUCH Statement (for DuraTrax, LaserLite Pro, and LaserLite Mx only) 180
UCASE$ Function..186
VAL Function ...187
WHILE…WEND Statement ..189

CHAPTER 5 ...191

BASIC COMPILERS...191
Vxbasicw.exe Overview for Windows...191

Windows DLL ... 191
Vxbasic.exe Overview for DOS ..192
Videx BASIC Overview for Macintosh ...192

Table of Contents vi

APPENDIX A ...193

BASIC RESERVED WORDS ...193

APPENDIX B..195

LASERLITE MX MODULUS INFORMATION ...195
(NOTES ABOUT HASHED INDEXES ON THE LASERLITE MX)195

APPENDIX C ...197

BASIC SAMPLE PROGRAMS..197
Default.b ..197
MXDEMO.B...210

INDEX ...237

Introduction 1

Introduction

This manual provides assistance to programmers and developers writing
programs for the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
data collectors using the BASIC programming language. The BASIC
language implemented by Videx BASIC is a fairly large subset of
Microsoft QuickBASIC with extensions for handling the DuraTrax,
LaserLite, LaserLite Pro, and LaserLite Mx.

The programs are compiled to virtual machine language by a BASIC
compiler (either a Windows program with drag-and-drop interface or a
DOS command line compiler).

This manual consists of five chapters and three appendixes, containing a
variety of aids for the developer.

Chapter 1 contains information on BASIC programming protocol.
Chapter 2 describes the BASIC data types.
Chapter 3 contains information on BASIC expressions and operators.
Chapter 4 describes the Videx BASIC statements and functions.
Chapter 5 contains information on the BASIC compiler programs.
The appendixes contain a list of the BASIC reserved words, information
on the LaserLite Mx modulus, and two sample BASIC programs that can
be used on the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
data collectors.

2 Introduction

Chapter 1 BASIC 3

Chapter 1

Videx BASIC

The Videx BASIC character set contains alphabetic characters, numeric
characters, and special characters. The alphabetic characters are the
letters A–Z, either uppercase or lowercase, and the underscore character.
The numeric characters are the digits 0–9. The special characters and
their purposes are:

Character Purpose
 <Enter> Pressing the <Enter> key terminates input of a line

 Blank (or space)

 $ Dollar sign (suffix for string data type)

 % Percent (suffix for integer data type)

 ' Single quotation mark or apostrophe (comment indicator)

 (Left parenthesis

) Right parenthesis

 * Asterisk (multiplication symbol)

 + Plus sign (addition symbol or concatenation operator)

 , Comma

 - Minus sign (subtraction symbol or prefix for negative number)

 . Period

 / Slash (division symbol)

 : Colon (separates statements on same line; ends line labels)

 ; Semicolon

 < Less than

 = Equal sign (assignment symbol or relational operator)

 > Greater than

 ? Question mark

 | Pipe (line continuation character)

4 Chapter 1 BASIC

Basic Program Line

The BASIC program line has the following syntax:

[line identifier] [statement] [: statement]...[comment]

Using Line Identifiers

Videx BASIC supports alphanumeric line labels for line identifiers.

An alphanumeric line label can be any combination of letters and digits,
starting with a letter and ending with a colon. BASIC reserved words
and type-declaration suffixes are not permitted. The following are valid
alphanumeric line labels:

Gamma:
ShowList:
TestB5:

Case is not significant. The following line labels are equivalent:

gamma:
Gamma:
GAMMA:

Line labels may begin in any column, as long as they are the first
characters other than blanks or tabs on the line. Blanks and tabs are
allowed between an alphanumeric label and the colon following it. A
line can have only one label.

Chapter 1 BASIC 5

BASIC Statements

A BASIC statement is either “executable” or “nonexecutable.” An
executable statement tells the program what to do next (for example,
telling it to read input, write output, open a file, or take some other
action). In contrast, a nonexecutable statement performs tasks such as
allocating storage for variables, or declaring and defining variable types.

The following are nonexecutable BASIC statements:

• REM or ' (comment notation)
• CONST (defines constant)
• DIM (allocates storage)

A comment is a nonexecutable statement used to clarify a program’s
operation and purpose; it is introduced by either a REM statement or a
single quote character ('). The following two lines are equivalent:

PRINT "Quantity remaining" REM Print report label.
PRINT "Quantity remaining" ' Print report label.

You may place more than one BASIC statement on a line, but a colon (:)
must separate the statements, as illustrated below:

FOR I=1 TO 5 : PRINT "Welcome friends." : NEXT I

If the BASIC statement exceeds the character length of your screen, use
the pipe (|) character at the end of the line to let the program know that
the BASIC statement continues onto the next line. End the statement
with the <Enter> key or with a colon character.

Every BASIC statement begins with a keyword and ends with either an
end of the line (<Enter> key) or with a colon character. The one
exception is assignment statements, where the initial keyword, LET, is
optional.

6 Chapter 1 BASIC

Notes:

Chapter 2 Data Types 7

Chapter 2

Data Types

Every variable in BASIC has a data type that determines what can be
stored in the variable. There are two categories of data in BASIC: string
data and numeric data. Each category includes elementary data types.
The following section summarizes these data types.

Elementary Data Types—String

All strings can have variable length up to a maximum size that is defined
separately for each string. The default size of a string is 31 characters,
but this can be changed to any value with the DIM statement (subject to
Videx BASIC memory limitations).

Strings are terminated by the null character (ASCII 0). (Note: A
consequence of this is that it is not possible to write the null character to
a string or to a file with Videx BASIC. See the discussions on the HEX$
function and TOUCH statement in Chapter 3 for more information on
handling null characters in a string.)

Elementary Data Types—Numeric

• Integer (two bytes)

Integers are stored as sixteen-bit binary numbers ranging in value from
-32,768 to 32,767.

8 Chapter 2 Data Types

Integer Numbers

All BASIC integers are represented as two’s complement values. This is
the most common way of representing integer numbers on a computer.
Integers use 16 bits (2 bytes) of memory.

In two’s complement representation, positive values are represented as
straightforward binary numbers. For example, BASIC would store an
integer value of 4 as the following sequence of 16 bits:

0000000000000100

Negative values are represented as the two’s complement of the
corresponding positive value. To form the two’s complement (the
negative) of the integer value 4, first take the representation above and
change all the ones to zeros and all the zeros to ones:

1111111111111011

Then, add one to the result:

1111111111111100

The final result is how BASIC represents -4 as a binary number. Because
of the way two’s complement numbers are formed, every combination of
bits representing a negative value has a 1 at the leftmost bit.

Chapter 2 Data Types 9

Constants

Constants are predefined values that do not change during program
execution. There are two general types of constants: literal constants
(such as numbers and strings) and symbolic constants.

Literal Constants

BASIC has two kinds of literal constants: string and numeric.

A string constant is a sequence of up to 32,767 alphanumeric characters
enclosed by double quotation marks. These alphanumeric characters can
be any of the characters (except the double quote character (") and
carriage-return line-feed sequences) whose ASCII codes fall within the
range of 1–255. This range includes both the actual ASCII characters
(1–127) and the extended characters (128–255). The following are valid
string constants:

"HELLO"
"$25,000.000"
"Number of Employees"

Also, any expression consisting only of other string constants, for
example:

"HE" + "LLO"

Numeric constants are positive or negative integer numbers, consisting
of one or more decimal digits (0–9), with a negative sign prefix (-) for
negative numbers. The range for integer decimal constants is -32768 to
32767. Note: Numeric constants in BASIC cannot contain commas.

For example:

68
407
-1
29000

10 Chapter 2 Data Types

Symbolic Constants

BASIC provides symbolic constants that can be used in place of
numeric or string values. The following fragment declares two symbolic
constants and uses one to dimension an array:

CONST MAXCHAR%=254, MAXBUF%=MAXCHAR%+1
DIM Buffer% (MAXBUF%)

The name of a symbolic constant follows the same rules as a BASIC
variable name. You may include a type-declaration character (% or $) in
the name to indicate its type, but this character is not part of the name.
For example, after the following declaration, the names N$ and N%
cannot be used for variable names because they have the same name as
the constant:

CONST N=45

A constant’s type is determined by an explicit type-declaration character
or assumed to be an integer.

Variables

A variable is a name that refers to an object—a particular number or
string. Simple variables refer to a single number or string. Array
variables refer to a group of objects of the same type.

A numeric variable, whether simple or array, can only be assigned an
integer numeric value; a string variable can only be assigned a character-
string value. The variable must always match the type of data (numeric
or string) assigned to it.

Variables can be assigned to a constant value:

A = 4
B$ = "sail the ocean blue "

Variables can also be assigned the value of another string or numeric
variable:

A$ = B$
Profits = NetEarnings

Chapter 2 Data Types 11

Before a variable is assigned a value, its value is undefined. No
assumptions should be made about the value of a variable until it has
been explicitly assigned a value. See Chapter 3, “Expressions and
Operators,” for more information on the operators used in BASIC for
combining variables and constants.

Variable Names

A BASIC variable name may contain any number of characters. The
characters allowed in a variable name are letters, numbers, the
underscore character, and the type-declaration characters (% and $).
Variable names are not case sensitive in BASIC. The first character in a
variable name must be a letter. See the section “Simple Variables” on
page 12.

A variable name cannot be a reserved word, but embedded reserved
words are allowed. For example, the following statement is illegal
because SEEK is a reserved word (BASIC is not case sensitive):

Seek = 8

However, the following statement is legal, since the reserved word is
embedded within the variable name:

TimeSeek = 8

Reserved words include all BASIC commands, statements, function
names, and operator names. See Appendix A for a complete list of
BASIC reserved words.

12 Chapter 2 Data Types

Variable Types

This section discusses the two variable types: simple variables
(variables referring to a single object) and array variables (variables
referring to a group of objects).

Simple Variables

Simple variables can be numeric or string variables. You can specify
simple variable types by one of two ways:

• = 1. Append one of the following type-declaration suffixes to the

variable name:

 $ (for string variables)

 % (for integer variables)

The dollar sign ($) is the type-declaration character for string
variables; it declares that the variable represents a string. You can
assign a string constant of up to 31 characters to it by default, as in
the following example:

A$ = "SALES REPORT"

The percent sign (%) is the type-declaration suffix for numeric
variables; it declares that the variable represents an integer number.

Variables without a type-declaration suffix are assumed to be integer
variables.

• = 2. Declare the variable in a DIM statement having the form:

 DIM variablename

For example, the following statement declares the variable A as
being a string type:

DIM A$

Chapter 2 Data Types 13

Array Variables

An array is a group of objects that are referenced with the same variable
name. The individual values in an array are called elements. These
elements are the array variables, and they can be used in nearly any
BASIC statement or function that uses variables. An array is
“dimensioned” when you declare the name, type, and number of
elements in the array.

Each array element is referred to by an array variable subscripted with
an integer or an integer expression.

The maximum subscript value is set with the DIM statement. (See page
78–79 for more information on the DIM statement.)

You may have arrays of any variable type.

Array elements require a certain amount of memory, depending on the
variable type. To find the approximate amount of memory required by an
array, multiply the number of elements by the bytes per element
required for the array type. For example, consider the following two
arrays:

DIM Array1$ (7) * 12
DIM Array2% (99)

The first array, Array1, has 8 (0–7) string elements that can have up to
12 characters each, so Array1 takes approximately 96 (8 x 12) bytes of
memory. The second array, Array2, has 100 (0–99) 2-byte integer
elements so Array2 takes approximately 200 (100 x 2) bytes of memory.

14 Chapter 2 Data Types

Videx BASIC Memory Considerations

Videx BASIC supports up to 32K of data. Data includes all simple
variables, arrays, and constants declared in the program. It also includes
the name of the data file if it is a constant in the program.

For example, the following program line:

open "test.crf" for reference as #1

has two constants: "test.crf" and 1.

The 32K data limit does not include run-time memory limitations, such
as file tables, data storage, or cross-reference files.

Videx BASIC also additionally supports up to 32K of code. Code is the
set of instructions to the BASIC engine in the DuraTrax, LaserLite,
LaserLite Pro, or LaserLite Mx operating system.

Chapter 3 Expressions & Operators 15

Chapter 3

Expressions & Operators

This chapter discusses how to combine, modify, compare, or get
information about expressions by using the operators available in
BASIC.

Anytime you do a calculation or manipulate a string, you are using
expressions and operators. This chapter describes how expressions are
formed, discusses the order in which BASIC uses operators, and
concludes by describing the following four kinds of operators:
Arithmetic, Comparison, Bitwise, and String.

Expressions and Operators

An expression can be a string or numeric constant, a variable, or a single
value obtained by combining constants, variables, and other expressions
with operators. Operators perform mathematical or logical operations on
values. The operators provided by Videx BASIC can be divided into four
categories, as follows:

 1. Arithmetic operators perform calculations. See page 17 for

information.

 2. Comparison operators compare strings and numeric values.

See page 19 for information.

 3. Bitwise operators test complex conditions or manipulate
 individual bits. See pages 20–21 for information.

 4. String operators combine and compare strings. See pages

22–23 for information.

16 Chapter 3 Expressions & Operators

Hierarchy of Operations

The BASIC operators have an order of precedence. Operations are
executed in the following order:

 1. Negation (-) and NOT (bitwise complement).

 2. Multiplication (*), division (/), and modulo
 arithmetic (MOD).

 3. Addition (+), subtraction (-), AND (bitwise
 conjunction), and OR (bitwise disjunction).

 4. Comparison operations (=, >, <, <>, <=, >=).

Note: Operator precedence is somewhat different in Videx BASIC than
in QuickBASIC; when in doubt, use parentheses.

If the operations are different and of the same level, the leftmost one is
executed first, the rightmost last, as shown below:

A = 3 + 12 / 6 * 3 - 2 'A = 7

The order of operations would be as follows:

 1. 12 / 6 (= 2)
 2. 2 * 3 (= 6)
 3. 3 + 6 (= 9)
 4. 9 - 2 (= 7)

In a series of additions or multiplications, there is a fixed evaluation
order, beginning with the first and preceding to the right. For example, in
the following example:

B = 3 + 12 + 6 + 3 + 2 'B = 26

The order of operations would be as follows:

 1. 3 + 12 (= 15)
 2. 15 + 6 (= 21)
 3. 21 + 3 (= 24)
 4. 24 + 2 (= 26)

Chapter 3 Expressions & Operators 17

Arithmetic Operators

You can change the order in which the arithmetic operations are
performed by using parentheses. Operations within parentheses are
performed first. Inside parentheses, the usual order of operation is
maintained. Here are some sample algebraic expressions and their
BASIC counterparts:

Algebraic Expression BASIC Expression

X − Y
Z

 X − Y() Z

XY
Z

 X ∗ Y Z

X + Y
Z

 X + Y() Z

X −Y() X ∗ − Y() or X ∗− Y

18 Chapter 3 Expressions & Operators

Modulo Arithmetic

Modulo arithmetic is denoted by the modulus operator MOD. Modulo
arithmetic provides the remainder of an integer division, rather than the
quotient.

For example:

16 MOD 5: 16 ÷ 5 = 3 with a remainder of 1
Result = 1

3250 MOD 256: 3250 ÷ 256 = 12 with a remainder of 178
Result = 178

10 MOD 4: 10 ÷ 4 = 2 with a remainder of 2
Result = 2

68 MOD 8: 68 ÷ 8 = 8 with a remainder of 4
Result = 4

See LOF function, SEEK function, and TOUCH statement in Chapter 3
to see examples of how MOD is used.

• Examples:

PRINT 10 MOD 4 ‘Prints the remainder of 10 ÷÷÷÷ 4

PRINT 26 MOD 5 ‘Prints the remainder of 26 ÷÷÷÷ 5

PRINT 68 MOD 8 ‘Prints the remainder of 68 ÷÷÷÷ 8

• Output:

2

1

4

Chapter 3 Expressions & Operators 19

Comparison Operators

Comparison operators are used to compare two values, as shown in the
following table. They work on both integers and strings. The result of
the comparison is either true (nonzero) or false (zero). This result can
then be used to make a decision regarding program flow. (Strings are
compared lexicographically; see pages 22–23 for information on string
comparisons.)

Comparison Operators and Their Functions

Operator Relation Tested Expression

= Equality* X = Y

<> Inequality X <> Y

< Less than X < Y

> Greater than X > Y

<= Less than or equal to X <= Y

>= Greater than or equal to X >= Y

* The equal sign is also used to assign a value to a variable.

When arithmetic and comparison operators are combined in one
expression, the arithmetic operations are always done first. For example,
the following expression is true if the value of X + Y is less than the
value of (T - 1)/Z:

X + Y < (T - 1)/Z

20 Chapter 3 Expressions & Operators

Bitwise Operators

Bitwise operators perform tests on multiple relations, bit manipulations,
or Boolean operations; they return a true (nonzero) or false (zero) value
to be used in making a decision.

Example:

IF (D < 200) AND (F < 4) THEN
WHILE (I > 10) OR (K < 0)
.
.
.

WEND
IF NOT P THEN PRINT "Name not found"

There are three bitwise operators in Videx BASIC: NOT, AND, and
OR. They are described in the following table.

Videx BASIC Bitwise Operators

Operator Meaning
NOT Bitwise complement
AND Bitwise conjunction
OR Bitwise disjunction (inclusive “or”)

Each operator returns results as indicated in the following table. A T
indicates a true value (nonzero) and an F indicates a false value (zero).

Values Returned by Bitwise Operations

Values of Value Returned by Bitwise Operator
X Y X X

NOT AND OR
 X Y Y

T T F T T
T F F F T
F T T F T
F F T F F

Bitwise operators compare each bit of the first operand with the
corresponding bit in the second operand to compute the bit in the result.

Chapter 3 Expressions & Operators 21

In these bitwise comparisons, a 0 bit is equivalent to a false value (F) in
the previous table, while a 1 bit is equivalent to a true value (T).

It is possible to use bitwise operators to test bytes for a particular bit
pattern. For example, the AND operator can be used to mask all but one
of the bits of a status byte, while the OR operator can be used to merge
two bytes to create a particular binary value.

• Examples:

PRINT 63 AND 16
PRINT -1 AND 8
PRINT 10 OR 9
PRINT NOT 10, NOT 11, NOT 0 'NOT X = -(X + 1)

• Output:

16
8
11
-11 -12 -1

The first PRINT statement uses AND to combine 63 (111111 binary)
and 16 (10000). When BASIC calculates the result of an AND it
combines the numbers bit by bit, producing a 1 only when both bits are
1. Because the only bit that is a 1 in both numbers is the fifth bit, only
the fifth bit in the result is a 1. The result is 16 or 10000 binary.

In the second PRINT statement, the numbers -1 (1111111111111111
binary) and 8 (1000 binary) are combined using another AND operation.
The only bit that is a 1 in both the numbers is the fourth bit, so the result
is 8 decimal or 1000 binary.

The third PRINT statement uses an OR to combine 10 (binary 1010)
and 9 (binary 1001). An OR produces a 1 bit whenever either bit is a 1,
so the result of the OR in the third PRINT is 11 (binary 1011).

Performing a NOT on a number, as in the fourth PRINT statement,
changes all one bits to zeros and all zero bits to ones. Because of the way
two’s complement numbers work, taking the NOT of a value is the same
as adding 1 to the number and then negating the number. So in the final
PRINT statement, the expression NOT 10 gives a result of -11, NOT 11
gives a result of -12, and NOT 0 gives a result of -1.

22 Chapter 3 Expressions & Operators

String Operators

A string expression consists of string constants, string variables, and
other string expressions combined by string operators. There are two
classes of string operations: concatenation and string comparison.

Concatenation is the act of combining two strings. The plus sign (+) is
the concatenation operator for strings. For example, the following
program fragment combines the strings CHR$(13) and CHR$(10) to
create a carriage return/line feed combination for use in a PRINT
statement. Note: CHR$(13) represents a carriage return and CHR$(10)
represents a line feed. The following program also combines variables
A$ and B$ to produce the value FILENAME.

 A$ = "FILE" : B$ = "NAME"

NL$ = CHR(13) + CHR$ (10)
AB$ = A$ + B$
PRINT AB$; NL$; "NEW ";AB$

• The output is: FILENAME

NEW FILENAME

Strings can be compared using the following comparison operators:

Operator Description
<> Not equal to
= Equal to
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

Note: These are the same relational operators used with numbers.

String comparisons are made by taking corresponding characters from
each string and comparing their ASCII codes. If the ASCII codes are the
same for all the characters in both strings, the strings are equal.

Chapter 3 Expressions & Operators 23

If the ASCII codes differ, the lower code number precedes the higher. If
the end of one string is reached during string comparison, the shorter
string is smaller if they are equal up to that point. Leading and trailing
blanks are significant.

Following are examples of true string expressions:

"AA" < "AB"
"FILENAME" = "FILE" + "NAME"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" 'where B$ = "8/12/85"

String comparisons can be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

24 Chapter 3 Expressions & Operators

Notes:

Chapter 4 Statement & Function Reference 25

Chapter 4

Statement & Function Reference

This chapter is a dictionary of the Videx BASIC statements and
functions for the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
data collectors.

Please note that the following statements and functions are not supported
by the Macintosh version of the Videx BASIC compiler: BIN function,
CARDCMD statement, CARDSTATUS function, HEX$ function, and
TOUCH statement.

Each entry follows the following format:

• =Action - Summarizes what the statement or function does.
• =Syntax - Shows the model syntax.
• =Parameters - Describes the variables used in the syntax.
• =Remarks - Descriptions of arguments, options, and use.
• =Returns - Value returned (functions only).
• =Example - An example using the function or statement line. Note: In

the examples, the statements CLS, SLEEP, and LOCATE are used to
control the data collector’s display. They are for effect only and may
be ignored if you wish. SLEEP 0 halts program execution until a key
is pressed.

Following is a summary of the symbols used to define the syntax of the
Videx BASIC functions and statements program lines:

• =Terminal symbols are bold. These are to be typed in “as is.”
• =Variables are in italics.
• =Variables that are assigned return values are in UPPERCASE

ITALICS.
• = [] enclose optional items.
• ={ } enclose items to repeat 0 or more times.
• = () enclose groups of items.
• =The pipe character (|) separates alternatives.

26 Chapter 4 Statement & Function Reference

ABS Function

• Action

Returns the absolute value of a numeric expression.

• Syntax

result% = ABS (intexp%)

• Parameters

Argument Description
intexp% Any whole number from -32768 to 32767.

• Remarks

The absolute value function returns the unsigned magnitude of its
argument. For example, ABS (-1) and ABS (1) are both 1.

• Returns

The unsigned value of intexp% as an integer.

• Example

REM ABS() Function

DIM result%,intexp%
CLS
intexp% = -1
PRINT "Value of intexp% is:"
PRINT intexp%;
SLEEP 0 'pause screen until keypress
CLS 'clear the screen
result% = ABS(intexp%)
PRINT "ABSolute is:"
PRINT result%;
SLEEP 0

Output:
ABSolute is:
1

Chapter 4 Statement & Function Reference 27

ASC Function

• Action

Returns the ASCII code of the first character in the string.

• Syntax

result% = ASC (strexp$)

• Parameters

Argument Description
strexp$ Any string expression.

• Remarks

See also CHR$. The CHR$ function complements ASC.

• Returns

The ASCII code of the first character in strexp$ as an integer.

• Example

REM ASC() Function

DIM strexp$,result%
FOR i = 1 TO LEN("VIDEX")

strexp$ = MID$("VIDEX",i,1)
result% = ASC(strexp$)
CLS
PRINT "ASCII for "; strexp$; " is:"
PRINT result%;
SLEEP 0 'pause screen until keypress

NEXT i

28 Chapter 4 Statement & Function Reference

BEEP Statement

• Action

Sounds the beeper.

• Syntax

BEEP

• Parameters

None

• Remarks

The BEEP statement makes a sound through the beeper. This statement
is the same as: SOUND 1028, 100

See also SOUND.

• Example

REM BEEP Statement

CLS
PRINT "This is a beep!"
BEEP
SLEEP 0
CLS
PRINT "This is :"
PRINT "SOUND 1028,100";
SOUND 1028,100
SLEEP 0

Chapter 4 Statement & Function Reference 29

BIN Function

• Action

Converts hexadecimal digits to the corresponding integer value. (Videx
BASIC) (Note: This function is not supported by the Macintosh version
of the Videx BASIC compiler.)

• Syntax

result% = BIN (hex_string$, num_digits%)

• Parameters

Argument Description
hex_string$ String variable containing hexadecimal digits to process at

the beginning of the string. A hexadecimal digit can be
either uppercase or lowercase.

num_digits% Number of characters to convert (0 to 4). If zero is
specified, only the number of valid hexadecimal digits
encountered (up to 4) will be converted.

• Remarks

The last character converted (moving left to right) is always the least-
significant nibble (4 bits) of the result. The more significant characters
are leftmost in the string. For example, consider the two source strings
FACES and 3C2GT, the respective results for various num_digits%
values would be:

hex_string$ num_digits% result%
FACES 0 -1330 (FACE hex)

 1 15 (000F hex)
 2 250 (00FA hex)
 3 4012 (0FAC hex)
 4 -1330 (FACE hex)

3C2GT 0 962 (03C2 hex)
 1 3 (0003 hex)
 2 60 (003C hex)
 3 962 (03C2 hex)

 4 -1 (error - too few digits)

30 Chapter 4 Statement & Function Reference

The compiler flags any out-of-range values for num_digits%. If the
parameter is supplied by a variable, any out-of-range values are forced
into range by the formula:

good = ((bad - 1) MOD 4) + 1

For example, a value of 5 becomes 1 (see Example 1) and a value of 19
becomes 3 (see Example 2).

Note: MOD arithmetic provides the remainder of an integer division,
rather than the quotient. For example: 16 MOD 5 = 1: 16 ÷ 5 = 3 with a
remainder 1; 3250 MOD 256 = 178: 3250 ÷ 256 = 12 with a remainder
of 178. See page 18 for complete information on MOD arithmetic.

• = Example 1

 good = ((5 - 1) MOD 4) + 1
 good = (4 MOD 4) + 1
 good = (0) + 1
 good = 1

• = Example 2

 good = ((19 - 1) MOD 4) + 1
 good = (18 MOD 4) + 1
 good = (2) + 1
 good = 3

The BIN function is similar to the ASC function, except that it interprets
pairs of hexadecimal digit characters (two per byte) as an integer rather
than giving just the ASCII value of an individual character.

See also ASC, HEX$, and TOUCH.

• Returns

Returns the value of the first num_digits% hexadecimal digits in the
string. If num_digits% is not zero and there are fewer digits than
specified, or if one of the characters of the required number is not a valid
hexadecimal digit, the function returns (-1). A legitimate value of FFFF
can be verified by string comparison.

Chapter 4 Statement & Function Reference 31

• Example

REM BIN()and HEX$ Functions

DIM hex_data$ * 4
DIM i%, number%

FOR i% = 1 to 10
number% = i% * 50
hex_data$ = HEX$ (number%, 0) 'convert to hex
CLS
PRINT str$ (number%); " in hex:"
PRINT hex_data$; 'display result
SLEEP 0
number% = bin (hex_data$, 0) 'convert back to decimal
CLS
PRINT hex_data$; " as decimal:"
PRINT str$ (number%); 'display result
SLEEP 0

NEXT i%
END

32 Chapter 4 Statement & Function Reference

CARDCMD Statement (for LaserLite Mx only)

• Action

Constructs and sends commands to the memory card processor, adding
required overhead and integrity elements. (Videx BASIC) (Note: This
statement is not supported by the Macintosh version of the Videx BASIC
compiler.)

• Syntax

CARDCMD cmd_letter[!][, param_1 [, param_2 [, param_3]]]

or

CARDCMD command_str$

• Parameters

Argument Description
cmd_letter A single letter that signifies the command to the memory

card processor. Case is not significant. CRC checking is
always used for this form of the command. Follow the
letter immediately (no space) with an exclamation mark
for commands that may take some time; the system does
not wait for the result and retrieves it only when the
CARDSTATUS command is issued. The default is to
retrieve the result immediately after issuing the command
(before returning). Special case: To activate a hardware
reset of the memory card processor, this parameter should
be an integer constant or variable with the value (-1).

param_x These are parameters appropriate to the command to be
executed. There can be zero or one string parameter, and
if present it must be the last parameter. All parameters
can be constants, variables, or expressions. The integer
parameters can be specified (for CARDCMD only) by a
single letter. The value is then interpreted to be the ASCII
value of the letter, with case being significant. A side
effect of this feature is that any integer parameters cannot
begin with a variable name consisting of a single letter.

Chapter 4 Statement & Function Reference 33

or

Argument Description
command_str$ Complete command to send to the memory card

processor. Must be the only parameter. Programmer is
responsible for using the correct syntax within the
command string. The system adds CRC error checking if
the first character of the string is lowercase.

• Remarks

This command constructs and sends a command to the memory card
processor. Its ability to accept a variable number of parameters means
that it can adapt to the variations in syntax of the command set. Also,
since single letters are interpreted as the integer ASCII value of the
letter, both mode and file-type letters can be specified exactly as they are
in the actual memory card processor command. (See page 38 for
information on file types, pages 39–40 for additional notes on the
CARDCMD statement commands, and Appendix B for information on
hash values.)

The command syntax also allows the programmer to construct
commands manually. A single string parameter (that is, with no
command code parameter preceding) is presumed to contain the entire
command already constructed. The string is sent as is, except when the
first character is lowercase; then the CRC bytes are calculated and added
to the end of the string.

The command sends the number of parameters specified (up to the
maximum of three), so you must be sure that the number of parameters
matches the syntax for the command. The BASIC compiler insists that
there is at least one parameter and that if there are three parameters
beyond the command letter, that the last one is a string.

After CARDCMD is used to send a command to the memory card
processor, CARDSTATUS must be used to retrieve the response. Any
data returned by previous commands, and not yet retrieved by a
CARDSTATUS function call, will be lost.

See also CARDSTATUS and HEX$.

34 Chapter 4 Statement & Function Reference

CARDCMD Global Errors

If the LaserLite Mx operating system is unable to successfully execute
the CARDCMD statement, it sets the global error flag. You may use the
ERR() function to retrieve an error number. CARDCMD can issue the
following errors:

Error # Description
- 1 Communications with the memory card timed out.
- 2 There was no memory card module detected at startup.
- 3 There was no memory card inserted in the module detected at

startup.
- 4 The card inserted in the memory card module does not have a

recognized format.
- 11 The memory card processor is asleep and cannot receive a command.

Removing the memory card during operations can cause this.

• Example

See the CARDSTATUS examples.

CARDCMD Statement Commands
The following table gives a brief description of the commands that can
be used by the CARDCMD statement. These commands provide
communication to and from the LaserLite Mx’s memory card. The
command set is described in detail on pages 39–57. Parameters within
{ } are required; parameters within [] are optional. The parameters must
be sent in the given order.

command_str$ Brief Description
A, [hash value], {record} Add a new record to the memory card’s

open file. See page 39 for more
information.

C, {F/S/I}, [status bytes] List or send the memory card’s file
management or status report. See pages
40–43 for more information.

D, {file type}, {filename}
D, {file handle}
D, {file handle}, {file type}, {filename}

Delete a file from the memory card.
Delete an existing file.
Rename an existing file.
See page 44 for more information.

Chapter 4 Statement & Function Reference 35

command_str$ Brief Description
F, [hash value], [key field]

F

Search for a record in the memory card’s
open file with the given key field and send
it to the host.
Search for next record with same hash
value or key field.
See page 45 for more information.

H, [hash value], [key field]

H

Delete a record from the memory card’s
open file with the given key field.
Delete next record with same hash value
and key field.
See page 46 for more information.

K, &1092 Remove all deleted files from the
memory card. See page 47 for more
information.

M, {# of records/bytes}, {F/R}

M
M, H

Move the pointer within the memory
card’s open file.
Show the current record.
Delete the record at the move pointer.
See pages 48–50 for more information.

N, [param1] Format a new memory card or determine
memory card ID. See page 51 for more
information.

O, [modulus], {file type}, {filename}

O, {file handle}

Open a new or existing file on the
memory card.
Open an existing file.
See pages 52–53 for more information.

Q, {file type}, {filename} Calculate the CRC of a file and send it
back to the host. See page 54 for more
information.

S, {field bytes}, {F/R}, {string} Perform a search within the memory
card’s open file. See page 55 for more
information.

V Read the memory card’s program
version. See page 56 for more
information.

Y Repeat the last status byte or data. See
page 57 for more information.

Z Puts the data collector to sleep. See page
57 for more information.

36 Chapter 4 Statement & Function Reference

File Types

The LaserLite Mx memory card system supports the following types of
files: identification (D), boot (B), sequential (S), and indexed (I/H).
Each file type serves a different purpose. The file types are described in
the following table. See the LaserLite Mx Developer’s Reference
Manual for complete information.

Type Purpose Comments
D A binary file that provides an ID for

the memory card.
Only one (1) ID file may exist on
the memory card at a time.

B

Two types of boot files serve two
different purposes. One (CRD) is
for the memory card operating
software that executes in its 32K
XRAM; the other (CPU) is the
main operating system
(LMXxxx.OS) and application of
the LaserLite Mx.

These filenames are reserved by the
LaserLite Mx system.
CRD – The operating software for
LaserLite Mx 32K XRAM.
CPU – An operating system and
application that may be booted from
the memory card. Boot files must be
appended with two bytes as bit
complements to create a CRC of
B001 hex over the entire file.

S

A binary file not intended for
booting.

I

This is the primary file type for data
and cross-reference. Data is
appended record-by-record. Each
record is passed to the data
management system to ‘hash’ and
add to the record. This enables
quick lookup.

A hash table size must be indicated
when indexed files are created.
Please see the notes about hash
tables in Appendix B.

H

Another type of indexed file, but
the decision of table entry is
determined outside of the memory
card data management system. This
system may be useful for programs
that must maintain a strict order of
data, but require the ability to
change or edit data.

Vxcom does not support transferring
H files.

Chapter 4 Statement & Function Reference 37

Notes on CARDCMD Statement Commands

• = All communications between the host and the memory card must
begin with a key character command and end with a carriage return.

• = The key character of the commands may be lowercase or uppercase.
When the key character is uppercase, the memory card module
software is in debug mode; when the key character is lowercase, the
software is in normal mode. The difference between debug mode
and normal mode is that the communications between the host and
memory card are CRC checked for normal mode, and not CRC
checked for debug mode.

• = For a lowercase key character command, the CRC is calculated from
all of the bytes (including space and escape characters: & and ' or ")
before the carriage return. The complements of the two CRC bytes
are sent at the end of the command, before the carriage return, with
the low byte first. The CRC of all the bytes sent across before the
carriage return will always be &B001, if correct. The CRC of the
returns from the memory card will only include the bytes before the
carriage return.

• = There are two different types of fields besides the key character for a
command: parameters to control the behavior of the command and
data to be passed between the host and the memory card.
• = All of the fields for a command must be separated by a space

and must be input in the order defined.
• = The parameters may be binary values, single byte ASCII, and

ASCII strings (such as filename and key field).
• = A binary parameter may be up to four bytes long and can be

input in both decimal and hexadecimal formats.
• = The data may be hexadecimal values (for binary data) or ASCII

strings (for records).
• = All hexadecimal values used in the command line must begin

with an ampersand (&) and end with an ampersand, space, or
carriage return.

• = All ASCII strings (with more than one character) must be
enclosed in either single ('xxx') or double ("xxx") quotation
marks; a single non-numeric ASCII byte does not need to be
enclosed in quotation marks.

38 Chapter 4 Statement & Function Reference

• = The returns from the memory card can be status bytes (in decimal
form), data (in hexadecimal or ASCII string format), or prompts
responding to a single carriage input. The prompt for the firmware
includes three bytes: a carriage return, a line feed, and a semicolon
(:). The prompt for the memory card’s boot program (Data
Management System (DMS)) is: a carriage return, line feed, and
greater-than sign (>). All hexadecimal values returned by the
memory card will begin with an ampersand (&).

• = For indexed files, the DMS handles one record at a time. A tab
character must separate the fields within the record.

• = For sequential files, every byte in the data field of a command is
written to the file.

• = Doubling the “escape character” forces the character to be a data
byte, for example, “&&” in a quoted string represents character &;
“''” represents a 'character. If two continuous escape characters
need to be used as Escape (as when sending two strings together) a
space must be used to separate the strings.

• = Do not include a carriage return or a backspace in a quoted string. A
carriage return can only be used as the end of transmission mark and
the backspace key will delete the previous byte. If nonprintable bytes
need to be sent as part of a string, they should be sent as a
hexadecimal value.

• = Any binary data except the control characters (08 hex, 0D hex) and
the escape characters (&, " or ') can be sent as ASCII strings.

Chapter 4 Statement & Function Reference 39

CARDCMD Statement Commands

The following sections provide complete information about each
CARDCMD statement command.

A, [hash value], {record}
Adds data to the memory card’s open file (see the O command on pages
52–53 to open file). For an indexed (I) file, the card module first
calculates the hash entry based on the key field of the record and then
looks up the hash table for a pointer. If no pointer is found, it is the first
record for the entry. The record is saved as the current end-of-file and
the pointer at the hash table is set. If a pointer is found, a collision
occurred for this entry. The DMS traverses the list and finds the last
record with the same hash value. The new record is saved as the current
end-of-file and the pointer is set at the last record.

For type I files, the hash value is calculated internally. You can have
more than one record with the same key field. The key field is delimited
from other fields with a tab character (09 hex). For type H files, the hash
value must also be passed with the command. For type S/D/B files, the A
command appends {record} as data.

Example: Add a record to the open file:

CARDCMD A, "This is a record"

Successful return values:

00 (Record added)

Possible error codes that can be returned from this command:
01, 03, 04, 10, 32, 34, 39, 40, 41, 42, 53, 61, 63 (See pages 59–
60 for a description of the error codes.)

40 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands - continued

C, {F/S/I}, [status bytes]
Lists the memory card’s file management or status information or sends
a setup configuration to the memory card processor.

 F - List file management report.
 S - List status report.
 I - Send status report to the memory card processor.

F - List File Management Report

The file management report is sent out first, if asked, followed by
individual file information. The filenames are enclosed in quotation
marks. The file type is sent out as hexadecimal; all hexadecimal values
in the report start with an ampersand (&). A space is used to separate
hexadecimal from ASCII, or different parts of the listing (for example, a
space between file 1 and file 2). The following tables show the order of
the data format. A sample of the file management report is shown on the
following page.

File Management Report Format:

bytes 1–2 Total space of the card (Kbytes).
bytes 3–4 Bad space (Kbytes).
bytes 5–6 Available space (Kbytes).
bytes 7 Number of files (including deleted files).
bytes 8–b1 1st valid file information.
bytes b2–b3 2nd valid file information.
bytes b4–b5 3rd valid file information.
...

Individual File Information:

byte 1 File serial number in the memory card.
byte 2 File status.
byte 3 File type.
bytes 4–5 File table size.
bytes 6–7 The file size (Kbytes).
bytes 8–16 The filename (variable length from 1–18 bytes).

Chapter 4 Statement & Function Reference 41

Example: Request file management report:
CARDCMD C, F

Example Return:

&07980000076805 &01FF44FFFF0004 "card1"
&02FF42FFFF0014 "CRD" &030049089B000C
"data.txt" &03FF49089B000C "olddata.txt"
&04FF49089B000C "data.txt"

Note: The F command in a commands file issues the C, F command to
the memory card. It creates the following report on the information
above:
Memory Card File and Memory Status Report

Total Space: 1944 Kbytes
Bad Space: 0 Kbytes
Available Space: 1896 Kbytes
Retrievable Space: 12 Kbytes

Number of deleted files: 1
Number of valid files: 4

File Number Deleted Type Table Size Kbytes Name
1 No D n/a 4 "card1"
2 No B n/a 20 "CRD"
3 Yes I 2203 12 "data.txt"
3 No I 2203 12 "olddata.txt"
4 No I 2203 12 "data.txt"

42 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

The LaserLite Mx only allows one open file at a time. When you open a
file, the Mx Data Management System (DMS) automatically closes a
previously opened file and loses its reference to any given record. If your
application requires you to open and close multiple files and you wish to
re-open a file and return to the same record, then you must use the
Cardcmd C, S and Cardcmd C, I statements.

S – List Status Report

At any given time the LaserLite Mx may have an open file and a pointer
to data or to a record within that file. When power is removed from the
memory card module during sleep, the data management system loses
track of this information. The status report contains the information
needed to restore the memory card system to a previous state. The
operating system handles this automatically, but a developer may want
to maintain a reference to a file and record among multiple files. This
command provides that capability.

Status Report Format:

byte 1 Last command before the C command.
bytes 2–6 The move pointer: block # (2 bytes), page number

(1 byte), column address (2 bytes).
byte 7 File type.
bytes 8–b1 Open filename (variable length).

Example: Request status report:

Cardcmd C, S

Example Return:

&4F001503006A04

Example Program:
Cardcmd C, S 'Issue statement to get current

'file and record pointer
Gosub process_cardcmd_error 'Process any errors
Result% = Cardstatus(file1$)'Get status in file1$
Gosub process_card_error 'Process any return errors
Cardcmd O, I, "file2.txt" 'Open the next file

Chapter 4 Statement & Function Reference 43

I - Send Status Report to Memory Card Processor for Update

The status string retrieved by the C, S command may be sent to the
memory card processor with the C, I command. The LaserLite Mx
operating system and BASIC language automatically update the state of
the memory card in its sleep/wake routines. Normally, you will not be
concerned with updating the status, except when developing applications
that use multiple files.

Example Program:

Cardcmd C, I, file1$ 'Re-open previously opened file and
'restore pointer to specific record

Gosub process_cardcmd_error 'Process any errors
Result% = Cardstatus(file1$) 'Get status in file1$
Gosub process_card_error 'Process any errors from return

Successful return values:

File management report (for C, F); status report (for C, S);
00 (for C, I).

Possible error codes that can be returned from this command:

01, 03, 04, 10, 31, 32, 51, 52, 63 (See pages 59–60 for a
description of the error codes.)

44 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

D, [modulus], {file type}, {filename}
 or

D, {file handle}
 or

D, {file handle}, {file type}, {new name}

Deletes or renames a memory card file. To delete a file, list the file type
(indexed (I or H), sequential (S), identification (D), or boot (B)) and
filename of the file to delete. The filename can have up to 18 bytes; or
you can use the file handle number (if known from a previous O
command).

To rename a file, you must refer to the file by the file handle number and
file type and pass it the new filename.

Example 1: Delete an indexed file with filename data.txt:

Cardcmd D, I, "data.txt"

Example 2: Rename an indexed file with filename data.txt and file
handle 03 to olddata.txt:

Cardcmd D, 03, I, "olddata.txt"

Successful return values:

00 (File deleted or renamed)

Possible error codes that can be returned from this command:

01, 03, 04, 09, 10, 31, 33, 40, 63, 65 (See pages 59–60 for a
description of the error codes.)

Chapter 4 Statement & Function Reference 45

F, [hash value], [key field]
 or
F
Searches for a record with the given key field in the memory card’s open
file and sends it to the host. This command only functions with file types
I and H. When a key field is not provided, and the last command was an
H or an F command with a key field, it tries to read the next record with
the same key field as was used in the last H command.

For example, to read multiple records with the same key field, the
following commands can be used. Assuming there are three records with
the key field ABCDEFG in an indexed file, then

Cardcmd F, "ABCDEFG": reads the first record;
Cardcmd F: reads the second record;
Cardcmd H: deletes the third record.

To read all of the records in an indexed file with the same hash value,
the following commands can be used:

Cardcmd F, [key field]: first record in the chain;
Cardcmd F: second record in the chain.

Example: Find a record in the open file:
Cardcmd F, "abc"

Return:

"abc" <field2> <field3> Record found.
35 No records match the find request.

Successful return values:

A record.

Possible error codes that can be returned from this command:
01, 03, 04, 06, 08, 10, 32, 35, 53, 63 (See pages 59–60 for a
description of the error codes.)

46 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

H, [hash value], [key field]

Deletes a record with the given key field from the memory card’s open
file. This command only functions with file types I and H. For an
indexed file, the program goes through the hash table, finds the record,
and sets the record status bit to zero. It does not change the pointer or
erase the record. When no key field is provided, and the last command is
an F or an H command with a key field, it tries to delete the next record
with the same key field as in the last H command.

Example: Delete a record from the open file:

 Cardcmd H, "abc"

Successful return values:

00 (Record deleted)

Possible error codes that can be returned from this command:

01, 03, 04, 06, 08, 10, 32, 35, 39, 40, 53, 63, 65 (See pages 59–
60 for a description of the error codes.)

Chapter 4 Statement & Function Reference 47

K, &1092

Removes deleted files from the memory card. This command copies the
file management report from the control blocks to other blocks, changes
content, erases the control blocks, and copies the information back to the
control blocks. Do not interrupt the processor during the operation
(power down or reset) as it is possible that file management information
can be lost. This command should only be used after important data is
transferred from the memory card to the computer.

The &1092 parameter is required and allows the command to remove
the deleted files from the memory card.

Example: Clean up the card:

 Cardcmd K, &1092

Successful return values:

00 (Deleted files removed from the memory card)

Possible error codes that can be returned from this command:

01, 03, 04, 10, 40, 61, 62, 63, 65, 67, 68 (See pages 59–60 for a
description of the error codes.)

48 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

M, {number of records/bytes}, {F/R}
 or

M, H, {file handle}
 or

M
Moves the pointer within the memory card’s open file (see the O
command on pages 52–53 to open file). For indexed (I or H) files, this
command moves the pointer forward (F) or backward (R) a certain
number of records within the open file, and sends out the current record
that the pointer is pointing to. When number of records = &FFFF, the
pointer is moved to the end-of-file (F) or the beginning-of-file (R). For
sequential (S) and identification (D) files, the number is in bytes, and the
program sends out 256 bytes. When the number of bytes = 0 (or is
omitted), the program sends out the current record or 256 bytes, but does
not move the pointer.

When a file is opened, the move pointer is set at the end-of-file. An F or
an H command sets the move pointer at that record.

Example 1: Move forward 128K records from current position in open
file:

 Cardcmd M, &020000, F

Returns:
 "abcdefg" <field 2> <field 3> <…>

 Record found; data reported.

 36 End-of-file encountered.

Chapter 4 Statement & Function Reference 49

Example 2: Move to beginning of the open file:
 Cardcmd M, &FFFF, R

Returns:

 "abcdefg data" Record found, data reported.

23 There is no data in the file.

Example 3: Delete the record at the move pointer:
 Cardcmd M, H

Returns:

 00 Record deleted.

Successful return values:

A record or 256 bytes of binary data.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 23, 36, 37, 39, 40, 53, 63, 65 (See pages 59–60
for a description of the error codes.)

50 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

The Move Pointer

The M card command moves a pointer within an open data file. The
following table indicates the location of the move pointer under different
circumstances.

Condition Location for file types I/H
(indexed files)

Location for file types
B/D/S (sequential files)

Open a file Last record. Last 256 bytes.
Append record Last record. Last 256 bytes.
Scrolling Current record. Current 256 bytes.
Closed file Invalid. Invalid.
Open file with
no data

“No data condition” (error 23). “No data condition” (error 23).

Delete record
with the H
command or
M, H command

At the deleted record. Must issue
another M command before issuing
an M, H command. The M command
then moves to the next record in the
data file. If there is not a valid next
record, then the move pointer moves
to the previous record.

Not applicable.

F command At the found record or, if not found,
at the bottom of the data file.

Not applicable.

S command At the found record or, if not found,
at the bottom of the data file.

Not applicable.

Chapter 4 Statement & Function Reference 51

N, [param1]

Formats the memory card. N, by itself, closes any open files and restarts
the memory card program. It also locks some of the physical functions,
so the IRAM, XRAM, and memory card contents cannot be accidentally
changed using low-level routines. To return the ID of the memory card,
issue the N command without a parameter.

The parameter &0129 unlocks low-level physical functions permitting
writing directly to the card module’s XRAM memory and formatting the
memory card.

The parameter &1092 erases the entire card and formats the card, if it is
not formatted.

Example 1: Format memory card:

 Cardcmd N, &1092

Returns:

 00 Memory card formatted.

Example 2: Determine memory card ID:

 Cardcmd N

Returns:

 "092612456" The card ID name, card module formatted.

Successful return values:

ID of the memory card.

Possible error codes that can be returned from this command:

01, 03, 04, 07, 10, 22, 63, 65 (See pages 59–60 for a description
of the error codes.)

52 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

O, [modulus], {file type}, {filename}

 or

O, {file handle}

Opens an existing or a new file on the memory card. To open an existing
file, only the file type (indexed (I or H), sequential (S), identification
(D), or boot (B)) and the filename is needed; or you can use the file
handle number, if known from a previous O command. The modulus
(number of hash table entries) can be zero. The modulus can be omitted
for sequential, identification, or boot files; for indexed or hashed files
the modulus can be from 1–65535. (Note: See Appendix B for
information on the modulus.) The filename can have up to 18 bytes.
When a file is opened, any following operations are directed to the open
file; any previously opened files are closed. When the module is
powered up, the firmware boots the memory card and starts to run the
DMS program from the XRAM. If successful, the O command returns
the file handle number of the opened file.

One memory card ID file can be opened per card. The filename is used
as the card ID, and any contents can be written to the file as a sequential
file. The ID can be found by writing an ID file to the memory card with
any name. It can also be found by issuing an N command (see page 51)
without a parameter.

Example 1: Open an indexed file with table size 2203 and filename
test1.txt:
 Cardcmd O, 2203, I, "test1.txt"
or
 Cardcmd O, &089B, I, "test1.txt"
or
 Cardcmd O, 03

Returns:
 &03 File opened successfully and 03 hex is the file handle.
 39 Memory full.

Chapter 4 Statement & Function Reference 53

Example 2: Open the ID file with the filename Videx:

 Cardcmd O, D, "Videx"

Returns:

 &01 ID file created successfully, with ‘Videx’ as
the card ID and assigned to file handle 01.

 "092612456" ID file could not be created because an ID
file already exists with ‘092612456’ as the
real card ID.

Successful return values:

File handle number or card ID name.

Possible error codes that can be returned from this command:

01, 03, 04, 07, 10, 31, 33, 39, 40, 51, 52, 63 (See pages 59–60
for a description of the error codes.)

54 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

Q, {file type}, {filename}

Calculates the CRC of a file and sends it back to the host. This command
is useful when sending a file to the memory card from the computer. The
Vxcom and Download communications programs automatically call this
command when sending files to the memory card.

Example: Check the CRC of a boot file:

 CARDCMD Q, B, "CPU"

Returns:

 &B001 The 16-bit CRC of the boot file (boot files on the
LaserLite Mx system must always return a CRC of
&B001).

Successful return values:

16 bit CRC of the file.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 31, 32, 51, 52, 63 (See pages 59–60 for a
description of the error codes.)

Chapter 4 Statement & Function Reference 55

S, {field number/bytes}, {F/R}, {string}

Performs a search within the memory card’s open file. For an indexed
file (I/H), this command searches for a record with the given string
within the given number of records. The field number limits the search at
the particular field. A zero field number forces the program to search
through the entire field for the given string. The key field is the number
one field. The field number is the fourth byte of the first parameter and
the number of records that were searched is given as the three least
significant bytes of the first parameter.

For a binary file, this command searches through the number of bytes
trying to match the given string. With no parameter, it reads the last
record or 256 bytes found. This command uses the same pointer as the
M command. Since this command does not use indexing, there may be
some noticeable delay when using this command to search through large
amounts of data.

Example: Search the open file for a record in field two with the pattern
“abcdefg” within the next 129838 records from the current move
pointer:
 CARDCMD S, &0201FB2E, F, "abcdefg"

Returns:

 "abcdefghijklmnop" Record found.

Successful return values:

A record or 256 bytes of binary data containing the search
string.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 23, 35, 36, 37, 39, 40, 63, 65 (See pages 59–60
for a description of the error codes.)

56 Chapter 4 Statement & Function Reference

CARDCMD Statement Commands – continued

V

Reads the memory card’s program version. The version is sent out in
ASCII format. The version number for the DMS is:
 VTDMSx.xx

The version number of the firmware is:
 VTMCFx.xx

Example: Read the DMS version:
 CARDCMD V

Returns:

 "VTDMS1.02" The DMS version.

Successful return values:

Version number of the DMS or firmware.

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 59–60 for a description of the error
codes.)

Chapter 4 Statement & Function Reference 57

Y

Repeats the data sent by the memory card processor.

Example: If the last command was the V example previously described:

 CARDCMD Y

Returns:

 VTDMS1.02 The DMS version.

Successful return values:

 Last data.

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 59–60 for a description of the error
codes.)

Z

Puts the memory card processor in sleep mode.

Example: Put the memory card processor to sleep:

 CARDCMD Z

Returns:

00 LaserLite Mx memory card processor is in sleep mode.

Successful return values:

 00 (Memory card processor in sleep mode)

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 59–60 for a description of the error
codes.)

58 Chapter 4 Statement & Function Reference

CARDSTATUS Function (for LaserLite Mx only)

• Action

Retrieves the response from the memory card processor after it is given a
command. (Videx BASIC) (Note: This function is not supported by the
Macintosh version of the Videx BASIC compiler.)

• Syntax

result% = CARDSTATUS (BUFFER_VAR$)

• Parameters

Argument Description
BUFFER_VAR$ String variable that receives a data component (if there is

any) of the memory card processor response. Do not use a
string constant or array variable element. The dimensioned
size of the string variable must be able to hold any data
response that might result from the command given. If it is
too small, the data is truncated.

• Remarks

If the data is in the form of a single-quoted ASCII field, the enclosing
single quotes are removed and any embedded single quotes are
interpreted. Hexadecimal fields are passed along unchanged; that is, the
return string contains the hexadecimal digits with the initial ampersand
(&) marker and terminating marker (if it is not a carriage return).

Whenever the CARDCMD statement is executed, the values returned by
this function are cleared even if they have not been retrieved. See also
CARDCMD and BIN.

• Returns

If the operation is successful, CARDSTATUS returns zero and the data
returned by the memory card processor is placed in BUFFER_VAR$.

If an error is detected by the operating system, CARDSTATUS returns a
negative number. If the memory card processor times out, the function
returns -1. If there is no memory card module, the function returns -2. If
a memory card was not installed in the card module at last startup from
sleep, the function returns -3. See the following table for information on
other error values.

Chapter 4 Statement & Function Reference 59

CARDSTATUS Return Values (returned by Operating System)

Return
Value

Description

- 1 Communications with the memory card timed out.
- 2 There was no memory card module detected at startup.
- 3 There was no memory card inserted in the module detected at startup.
- 5 The CRC of the return from the memory card system does not match.
- 6 The return from the memory card system is unrecognized.
- 7 The designated string is too short for return from the memory card.
- 8 No card command was issued since the last call to CARDSTATUS.
- 9 CARDCMD statement resulted in an error; get from ERR ().
- 10 Card processor is still busy when CARDSTATUS called.
- 11 Card is asleep when CARDSTATUS called.
- 15 The return from the memory card has exceeded the 2K buffer.

If communication occurs with the memory module, but an error or
warning condition is detected, CARDSTATUS returns a positive
number. The following table (continued on the next page) lists these
return values:

CARDSTATUS Return Values (returned by Memory Module)

Return
Value

Vxcom
Error Code

Description

00 21000 Operation successful.
01 21001 Unrecognized card. This version recognizes

Toshiba’s SSFDC 2 MB, 4 MB, and 8 MB memory
cards.

02 21002 Unrecognized card.
03 21003 Syntax error.
04 21004 CRC of command did not match.
05 21005 Unknown command.
06 21006 Missing parameters for this command.
07 21007 Incorrect parameters for this command.
08 21008 Binary file.
09 21009 Incorrect file type.
10 21010 Too much data in the command.

60 Chapter 4 Statement & Function Reference

Return
Value

Vxcom
Error Code

Description

22 21022 No ID file.
23 21023 No data.
31 21031 No such file exists.
32 21032 No file opened.
33 21033 Too many files (>60 files).
34 21034 The page has already been written to four times.

(Note: Toshiba only allows you to write to a page
four times.)

35 21035 No such record exists.
36 21036 End of file.
37 21037 Beginning of file.
38 21038 Time-out occurred.
39 21039 Memory full.
40 21040 Write/protect encountered.
41 21041 Record too large (>1024 bytes).
42 21042 Field too large (>255 bytes).
43 21043 Some of the physical functions are locked to avoid

data corruption. Try: N, &0129 to unlock.
51 21051 File management error (control data was changed).
52 21052 Sequential file corrupted (by accidental power

failure).
53 21053 Data corrupted.
54 21054 CRC of boot file did not match (program data may

be corrupted).
55 21055 The bootcard program is too large (must be less

than 24 KB).
61 21061 Card program failed (card may be worn out).
62 21062 Block erase failed (card may be worn out).
63 21063 Card format is incorrect.
64, 65 21064,

21065
First block of memory is bad (card may be
damaged).

66 21066 Too many bad blocks (card may be damaged).
67 21067 Most of the reserved control blocks are bad (card

worn out).
68 21068 The card has been erased more than 32,768 times

(each K, &1092 or N, &1092 counts as one
erasing).

Chapter 4 Statement & Function Reference 61

• Example 1

This routine opens a file on the memory card called “data.txt.” The
process_cardcmd_error routine checks the global error flag and
processes the error if there is one. If there is no error, then the routine
calls CARDSTATUS to get the return value, again processing any
errors if there are any. The subroutines referred to in the following
example are located in the sample MXDEMO program located in
Appendix C.

cardcmd O, 2203, I, "data.txt"
gosub process_cardcmd_error
'report errors from sending command to card
IF crderr% = 0 THEN

cardresult% = cardstatus(cardreturn$)
'retrieve results

gosub process_card_error 'handle any errors
ENDIF

62 Chapter 4 Statement & Function Reference

• Example 2

This routine scrolls down in an open data file. In the demo programs,
INPUTEVT calls this routine in response to the user pressing the down-
arrow key. The subroutines referred to in the following example are
located in the sample MXDEMO program located in Appendix C.

fn_down:

sound 1397, 10 'click so user knows we got the key
if (mode% = mode_top%) then

'we are at the top of the file, so don't move pointer
cardcmd M
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

'get the next line (if not at the top of the file)

else
cardcmd M, 1, F
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

endif

if cardresult% = 36 then
gosub scroll_info

'if at end of file, display system info
mode = mode_bottom%

elseif cardresult% = 23 then
gosub scroll_info
mode = mode_bottom%

else
display$ = cardreturn$
mode% = mode_dn%

endif

full_display$ = display$
'initialize for scroll right & left

shift% = 0

return

Chapter 4 Statement & Function Reference 63

CHR$ Function

• Action

Returns a one-character string whose ASCII code is the argument.

• Syntax

result$ = CHR$ (code%)

• Parameters

Argument Description
code% ASCII code (0–255) of character.

• Remarks

CHR$ is commonly used to send a special character to the display. The
tables on the following two pages list most of the display characters and
their ASCII code. There are other characters the LCD can display; feel
free to experiment. If you enter a character that the LCD cannot
interpret, it is displayed as a blank.

See also OPTION statement (options 512–575) and ASC. The ASC
function complements CHR$.

• Returns

The character that the ASCII code represents.

64 Chapter 4 Statement & Function Reference

• Example

This routine shows how CHR$ can be used to include a double quote (")
in a string.

REM CHR$() Function
REM This routine uses CHR$ to include a double quote (")
REM in a string.
Dim quote$
CLS
quote$ = CHR$ (34)
PRINT "This is a :"
PRINT quote$; "Quoted String"; quote$;
SLEEP 0

Output:
This is a :"Quoted String"

Table of Display Characters and Corresponding ASCII Codes

Character ASCII Character ASCII Character ASCII
Line feed 10 , 44 : 58

Carriage return 13 - 45 ; 59
Space 32 . 46 < 60

! 33 / 47 = 61
" 34 0 48 > 62
35 1 49 ? 63
$ 36 2 50 @ 64
% 37 3 51 A 65
& 38 4 52 B 66
’ 39 5 53 C 67
(40 6 54 D 68
) 41 7 55 E 69
* 42 8 56 F 70
+ 43 9 57 G 71

 Table of Display Characters and Corresponding ASCII Codes -
 continued on next page

Chapter 4 Statement & Function Reference 65

Character ASCII Character ASCII Character ASCII
H 72 b 98 | 124
I 73 c 99 } 125
J 74 d 100 → 126
K 75 e 101 ← 127
L 76 f 102 α 224
M 77 g 103 ä 225
N 78 h 104 β 226
O 79 i 105 ε 227
P 80 j 106 µ 228
Q 81 k 107 σ 229
R 82 l 108 ρ 230
S 83 m 109 ¢ 236
T 84 n 110 £ 237
U 85 o 111 ñ 238
V 86 p 112 ö 239
W 87 q 113 θ 242
X 88 r 114 ∞ 243
Y 89 s 115 Ω 244
Z 90 t 116 ü 245
[91 u 117 Σ 246
¥ 92 v 118 π 247
] 93 w 119 X 248
^ 94 x 120 ÷ 253
_ 95 y 121 █ 255
` 96 z 122
a 97 { 123

Table of Display Characters and Corresponding ASCII Codes

(Note: ASCII codes 0–7 provide access to eight user-definable
characters (1–8). ASCII codes 16–32, 128–160, and 254 are blank
spaces. ASCII codes 161–223 and 250–252 are Japanese characters. For
a complete list of the display characters, contact the Videx Technical
Support Department.)

66 Chapter 4 Statement & Function Reference

CLOSE Statement

• Action

Closes the numbered file.

• Syntax

CLOSE [[#] filenumber% { , [#] filenumber% }]

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.

• Remarks

A CLOSE statement with no arguments closes all open files. All files
can also be closed with an END statement.

See also OPEN, SEEK, and PRINT.

• Example

REM CLOSE Statement
DIM myFile$, i%
CLS
myFile$ = "data.txt"
OPEN myFile$ FOR APPEND as #0
FOR i% = 1 to 10 'write 10 lines with two tab

'delimited fields to the file
PRINT #0, "LINE "; STR$(i%), "VIDEX DURATRAX"

NEXT i%
CLOSE #0
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0

Chapter 4 Statement & Function Reference 67

CLS Statement

• Action

Clears the display.

• Syntax

CLS

• Parameters

None

• Remarks

After clearing the display, the cursor is placed in the top left corner
(location 0,0). It is not necessary to begin your program with a CLS
statement, as the screen clears and the cursor is set to 0,0 when the
program is executed.

See also LOCATE.

• Example

REM CLS Statement
NL$ = CHR$(13) + CHR$(10)
CLS
PRINT "CLS"; NL$; "Clears screen";
SLEEP 0
CLS
SLEEP 0
PRINT "See!"
SLEEP 0

Output:
CLS
Clears screen
See!

68 Chapter 4 Statement & Function Reference

COMMCLOSE Statement

• Action

Closes the currently open serial port. (Videx BASIC)

• Syntax

COMMCLOSE

• Parameters

None

• Remarks

In the current operating system release, the serial port is always open at
9600 baud. The COMMOPEN and the COMMCLOSE statements are
ignored by the current operating system.

See also COMMOPEN, COMMPRINT, and COMMINPUT.

• Example

REM COMMCLOSE Statement

DIM someData$
someData$ = "This is some data"
CLS
PRINT "Press scan button"
PRINT "when ready.";
SLEEP 0
COMMOPEN 1,96,8,N,1
COMMPRINT someData$
COMMCLOSE
CLS
PRINT "Sent data out"
PRINT "the serial port!";
SLEEP 0

See also the COMMINPUT example.

Chapter 4 Statement & Function Reference 69

COMMINPUT Statement

• Action

Gets a string from the currently open serial port and places the result in
the named stringvariable$. (Videx BASIC)

• Syntax

COMMINPUT stringvariable$ [, timeout1% [, timeout2%]]

• Parameters

Argument Description
stringvariable$ This is where the string is placed that was taken from the

currently open serial port.
timeout1% The length of time to wait in milliseconds (ms) after the

previous character is received before returning.
timeout2% The length of time to wait (ms) for the first character

before returning.

• Remarks

COMMINPUT returns when either stringvariable$ is full or a timeout
is reached.

The first timeout (timeout1%) is an intercharacter timeout (in ms). If a
character is not received in the specified number of ms after the previous
character was received, then COMMINPUT concludes that there are no
more characters of input and returns immediately. The default for this
value is zero.

The second timeout (timeout2%) is a first-character timeout (in ms). If
the first character is not received in the specified number of ms after
COMMINPUT is executed, then COMMINPUT concludes that there
are no characters of input and returns immediately. The default for this
value is the intercharacter timeout (timeout1%).

70 Chapter 4 Statement & Function Reference

In most cases an array element can be used anywhere a variable can.
COMMINPUT is one exception. The first argument cannot be an array
element.

See also COMMCLOSE, COMMOPEN, and COMMPRINT.

• Example

REM COMMINPUT Statement

DIM accumData$ * 40,nowData$
CLS
PRINT "Press scan button"
PRINT "when ready.";
SLEEP 0
CLS
PRINT " TERMINAL "
PRINT " EMULATION ";
COMMOPEN 1,96,8,N,1
COMMPRINT "Waiting for you"
SLEEP 0
CLS
accumData$ = ""
DO

nowData$ = ""
COMMINPUT nowData$,5,10
IF nowData$ <> "" THEN

IF ASC(nowData$) = 27 THEN
EXIT DO

ELSE
PRINT nowData$;
accumData$ = accumData$ + nowData$
IF LEN(accumData$) = 16 THEN

LOCATE 1,0
ELSEIF LEN(accumData$) > 32 THEN

CLS
accumData$ = ""

ENDIF
ENDIF

ENDIF
LOOP
COMMCLOSE
CLS

Chapter 4 Statement & Function Reference 71

COMMOPEN Statement

• Action

Opens a serial port with the specified settings. (Videx BASIC)

• Syntax

COMMOPEN port%, baud%, databits%, parity$, stopbit%

• Parameters

Argument Description
port% The serial port to open (use 1 for port 1).
baud% Sets the baud rate (use 96 for 9600 baud).
databits% Sets the databits (use 8 for 8 databits).
parity$ Sets the parity (use N for none).
stopbit% Sets the stop bit (use 1).

• Remarks

Errors can be tested with the ERR function.

In the current operating system release, the serial port is always open at
9600 baud. The COMMOPEN and COMMCLOSE statements are
ignored by the current operating system.

See also COMMINPUT, COMMPRINT, and COMMCLOSE.

• Example

See the COMMINPUT example.

All of the arguments must be exactly as shown in the example
(COMMOPEN 1, 96, 8, N, 1). That is, port 1, baud 9600, 8 data
bits, no parity, and 1 stop bit. The arguments are actually ignored, but
the recommended arguments should be used to allow for future
expansion.

72 Chapter 4 Statement & Function Reference

COMMPRINT Statement

• Action

Sends characters out the serial port.

• Syntax

The term expression includes both expression% and expression$.

COMMPRINT [expression] { (, | ;) [expression] }

• Parameters

Argument Description
expression The characters (integer (expression%) or string (expression$))

to be printed.

• Remarks

The COMMPRINT statement normally sends a carriage-return/line-
feed pair at the end of the line. You can suppress this behavior by ending
the COMMPRINT statement with a comma or semicolon. A comma
sends a tab character. A semicolon separates arguments without sending
anything out the port.

An error will occur if the statement contains two expressions in a row
without a separator (however, it is acceptable to have two separators in a
row).

See also COMMINPUT, COMMOPEN, and COMMCLOSE.

• Example

See the COMMINPUT example.

Chapter 4 Statement & Function Reference 73

CONST Statement

• Action

Introduces a named constant value.

• Syntax

CONST constantname = expression {, constantname = expression}

• Parameters

Argument Description
constantname A name following the same rules as a BASIC variable

name. You may add a type-declaration character (% or $)
to the name to indicate its type, but the character is not
part of the name.

expression Any expression that can be reduced to a simple constant
value; e.g., chr$(13) + "Hi!"

• Remarks

The constant name being introduced must not have been referred to on
any previous lines.

If you use a type-declaration suffix in the name, you may omit the suffix
character when the name is used, as shown in the following example:

CONST MAXDIM% = 250
.
.
.
DIM AccountNames$ (MAXDIM)

If you omit the type-declaration suffix, the constant is assumed to be an
integer.

74 Chapter 4 Statement & Function Reference

Constants must be defined before they are referenced. The following
example produces an error because the constant ONE is not defined
before it is used to define TWO (constants are defined from left to
right):

CONST TWO = ONE + ONE, ONE = 1

A common programming practice is to use a statement like the
following:

FALSE = 0
TRUE = NOT FALSE

Constants offer several advantages over using variables for constant
values:
 1. Constants can be defined only once for an entire module.
 2. Constants cannot be inadvertently changed.
 3. Constants produce more efficient code than using
 variables.
 4. Constants make programs easier to modify.

The following program fragment declares a single constant to dimension
a series of arrays. To increase or decrease the size of the arrays, it is
necessary to change only the value of the CONST statement.

CONST MAXCUST = 250
.
.
.
DIM AccountNumber$(MAXCUST), Balance(MAXCUST)
DIM Contact$(MAXCUST), PastDueAmount(MAXCUST)
.
.
.

Chapter 4 Statement & Function Reference 75

• Examples

REM CONST Statement
'* This example uses the NOT operator in a CONST expression.
CONST FALSE = 0, TRUE = NOT FALSE
CLS
PRINT "FALSE = "; STR$(FALSE)
PRINT "TRUE = "; STR$(TRUE);
BEEP
SLEEP 0
CLS

Output:

FALSE = 0
TRUE = -1

See also the WHILE...WEND example.

76 Chapter 4 Statement & Function Reference

DATE$ Function

• Action

Returns a string containing the current date.

• Syntax

nowDate$ = DATE$ ()

• Parameters

None

• Remarks

The DATE$ function returns a ten-character string in the form MM-DD-
YYYY, where MM is the month (01–12), DD is the day (01–31), and
YYYY is the year (1964–2063).

See also TIME$.

• Returns

The date as a ten-character string.

Chapter 4 Statement & Function Reference 77

• Example

REM DATE$() Function

Dim nowDate$, convDate$
CLS
nowDate$ = DATE$()
PRINT "Date is :"
PRINT nowDate$;
SLEEP 0
GOSUB make_date
CLS
PRINT "Date is :"
PRINT convDate$;
SLEEP 0
END

'
' make_date
' description: Convert an OS date "MM-DD-YYYY"
' into a TimeWand I style time "YYYYMMDD"
'

make_date:
nowDate$ = DATE$
convDate$ = RIGHT$(nowDate$, 4)
convDate$ = convDate$ + LEFT$(nowDate$, 2)
convDate$ = convDate$ + MID$(nowDate$, 4, 2)

RETURN

See also TIME$ example number 1.

78 Chapter 4 Statement & Function Reference

DIM Statement

• Action

A declaration statement that names one or more variables and allocates
storage space for them.

• Syntax

DIM variable$ [(upperbound%)] [* max%] {, single}

 single

• Parameters

Argument Description
variable$ A BASIC variable name.
upperbound% The highest subscript (as an integer) to define the

dimension of the array. The lowest subscript is always 0.
max% The maximum size for a particular string.

• Remarks

In some cases, this is no different than just using the named variable in
an expression. The name being introduced must not have been referred
to on any previous line.

The syntax illustrates that more than one variable can be handled in a
DIM statement. The term single represents allocating space for one
variable; that is, variable$ [(upperbound%)] [*max%] = single.

If the upperbound% for an array is specified after the variable name,
then an array is allocated with indexes from 0 to the upperbound%,
inclusive. (Unlike some implementations of BASIC, it is only possible to
have 0 for the lower bound of the array.)

Chapter 4 Statement & Function Reference 79

If max% is specified for a string variable (after the * character), then the
variable will be allocated with room for the specified number of
characters. Otherwise, 31 characters is used by default.

The following statements are examples:

DIM A (5) 'integer array with 6 elements (0 to 5)
DIM B$*8 'string with maximum of 8 characters
DIM C$(5)*8 'an array of 6 strings, each with a

'maximum 8 characters
DIM A (5), B$*8, C$(5)*8

'the three previous examples on one
'command line

It is good programming practice to put the required DIM statements at
the beginning of the program outside of any loops.

• Example

REM DIM Statement

DIM question$(9) * 12 'dim an array of 10 questions;
'up to 12 chars each

FOR i = 0 to 9
question$(i) = "QUESTION " + STR$(i+1)

'stuff array beginning with question 1
NEXT i

FOR i = 0 TO 9
CLS
PRINT "Element "; STR$(i) 'display the array's elements
PRINT question$(i);
SLEEP 2

NEXT i

80 Chapter 4 Statement & Function Reference

DO...LOOP Statement

• Action

Repeats a block of statements (repeated while a condition is true or until
a condition becomes true).

• Syntax 1

DO [(WHILE | UNTIL) integerexpression%]

[statementblock]

LOOP

• Syntax 2

DO

[statementblock]

LOOP [(WHILE | UNTIL) integerexpression%]

• Parameters

Argument Description
integerexpression% Any expression that evaluates to true (nonzero) or

false (0).
statementblock One or more BASIC statements to be repeated.

• Remarks

The DO condition is tested before each iteration of the loop, and the
LOOP condition is tested after each iteration of the loop.

The integerexpression% is considered to be true if it is nonzero and false
if it is zero.

Chapter 4 Statement & Function Reference 81

You can use both conditions in the same loop, but typically one (and
only one) condition will be used for any given loop. It is possible to use
no conditions. In this case, the loop must be exited with an EXIT
statement (or some other mechanism).

You may use a DO...LOOP statement instead of a WHILE...WEND
statement. The DO...LOOP is more versatile because it can test for a
condition at the beginning or at the end of a loop.

See also WHILE...WEND and FOR...NEXT.

• Example

The following two examples show how placement of the condition
affects the number of times the block of statements is executed.

In the first example, the test is done at the beginning of the loop.
Because Q is not less than 10, the body of the loop (the statement block)
is never executed.

REM DO...LOOP Statement example 1

'DO...LOOP with test at top of loop.
'Output shows that loop was not executed.
DIM Q
Q = 10
PRINT "Beg. Q value:";Q
DO WHILE Q < 10

Q = Q + 1
LOOP
PRINT "End Q value:";Q;
SLEEP 0
CLS

Output:

Beg. Q value: 10
End Q value: 10

82 Chapter 4 Statement & Function Reference

The following example tests Q at the end of the loop, so the statement
block executes at least once.

REM DO...LOOP Statement example 2

'DO...LOOP with test at bottom of loop.
'Output shows that loop was executed once.
DIM Q
Q = 10
PRINT "Beg. Q value:";Q
DO

Q= Q + 1
LOOP WHILE Q < 10
PRINT "End Q value:";Q;

SLEEP 0
CLS

Output:

Beg. Q value: 10
End Q value: 11

In general, test at the end of a loop only if you know that you always
want the body of the loop executed at least once.

Chapter 4 Statement & Function Reference 83

END Statement

• Action

Terminates program.

• Syntax

END

• Parameters

None

• Remarks

By itself, the END statement stops program execution and closes all
open files. The data collector returns to the command line, where it is
possible to communicate with it over the serial port.

You may place END statements anywhere in the program to end
program execution. The compiler always assumes an END statement at
the conclusion of any program, so omitting an END statement at the end
of a program still produces proper program termination.

• Example

REM END Statement

DIM buttonNum%
CLS

PRINT "PRESS A"
PRINT "BUTTON";

DO
buttonNum% = ASC(INKEY$())
IF buttonNum% <> 0 THEN

BEEP
END

ENDIF
LOOP

84 Chapter 4 Statement & Function Reference

ENVIRON$ Function

• Action

Returns various types of status information about the hardware and
environment. .

• Syntax

result$ = ENVIRON$ (index%)

• Parameters

Argument Description
index% An integer that determines the type of information returned.

(0 returns battery voltage, 1 returns available RAM, 2 returns
system version, 3 returns unit’s ID)

• Remarks

The index% argument determines the type of information returned. See
the following table for examples:

Index Status Examples
0 Battery voltage 3.65
1 RAM available 500

24K
2 System version 1.0.0 DuraTrax OS
3 Identifier 0000000000

The available RAM is returned as bytes up to 1023, higher numbers are
returned as K.

• Returns

Returns a string variable with battery voltage, available RAM, system
version, or ID depending on index% used.

Chapter 4 Statement & Function Reference 85

• Example

REM ENVIRON$() Function

DIM result$, envir%
result$ = ""
FOR envir% = 0 TO 3

result$ = ENVIRON$(envir%)
CLS
IF envir% = 0 THEN

PRINT "BATT VOLTS:"
ELSEIF envir% = 1 THEN

PRINT "AVAIL RAM:"
ELSEIF envir% = 2 THEN

PRINT "SYS VERSION:"
ELSEIF envir% = 3 THEN

PRINT "IDENTIFIER:"
ENDIF

PRINT result$;
SLEEP 0
NEXT envir%
CLS

See also LOF function example 1.

86 Chapter 4 Statement & Function Reference

EOF Function

• Action

Tests for the end-of-file condition.

• Syntax

result% = EOF (filenumber%)

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement (0–31).

• Remarks

The EOF function is used to test for the end-of-file condition of a file in
RAM. See the CARDCMD statement to work with files on the
LaserLite Mx memory card.

See also OPEN, LOF, and LOFH.

• Returns

Returns a -1 if the end of a sequential file has been reached.

Note: This actually just returns true if the current file position is at the
end of the file (after the last byte, ready to append). So, for example,
EOF(0) would return true immediately after executing the statement:

SEEK #0, 0, E

Chapter 4 Statement & Function Reference 87

• Example

REM EOF() Function
CONST false = 0,true = NOT false
DIM myFile$,i%,data$
myFile$ = "data.txt"
OPEN myFile$ FOR APPEND as #0 'this is an output file
FOR i% = 1 to 10 'write 10 lines to the file

PRINT #0, "LINE "; STR$(i%); "VIDEX DURATRAX"
NEXT i%
CLOSE #0
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
CLS
dataLine$ = ""
OPEN myFile$ FOR APPEND as #0 'this is an input file
SEEK #0,0
DO WHILE NOT EOF(0) 'when EOF is reached, loop stops

data$ = INPUT$(21,0)
PRINT data$
SLEEP 1 'pause screen for 1 second or keypress

LOOP

88 Chapter 4 Statement & Function Reference

ERR Function

• Action

Returns the most recent error condition.

• Syntax

isError% = ERR

• Parameters

None

• Remarks

Statements that set the error condition are explicitly noted in this
documentation. It is recommended that the ERR function be called after
any file handling, serial communication, or LaserLite Mx memory card
routines that set the error condition.

ERR clears the error condition.

• Returns

0 if no error; -1 if error is encountered.

• Example

See the LOF function example 2.

Chapter 4 Statement & Function Reference 89

EXIT Statement

• Action

A control statement that exits a FOR...NEXT loop, WHILE...WEND
loop, or a DO...LOOP. (Note: The EXIT statement functions somewhat
differently in Videx BASIC than in QuickBASIC.)

• Syntax

EXIT [FOR | WHILE | DO]

• Parameters

None

• Remarks

If no loop is specified, exits the innermost enclosing loop of any kind. If
a loop type is specified, exits the innermost enclosing loop of the
specified kind.

• EXIT FOR

An EXIT FOR statement may appear only in a FOR...NEXT loop.
EXIT FOR transfers control to the statement following the NEXT
statement.

An EXIT FOR statement transfers out of the immediately enclosing
loop when FOR...NEXT loops are nested.

• EXIT WHILE
The EXIT WHILE statement can be used only inside a
WHILE...WEND loop. EXIT WHILE transfers control to the
statement following the WEND statement.

An EXIT WHILE statement transfers out of the immediately
enclosing loop when WHILE...WEND loops are nested.

90 Chapter 4 Statement & Function Reference

• EXIT DO
The EXIT DO statement can be used only inside a DO...LOOP
statement. EXIT DO transfers control to the statement following the
LOOP statement.

An EXIT DO statement transfers out of the immediately enclosing
loop when DO...LOOP statements are nested.

See also FOR...NEXT, WHILE...WEND, and DO...LOOP.

• Example

REM EXIT Statement (using EXIT DO)
DIM r%, k%, aKey$ * 4
r% = 1
k% = 0
aKey$ = ""

DO
r% = r% + 1
k% = ASC(INKEY$())
LOCATE 0,0
PRINT "Loop times " ; r%
PRINT "ESC = Any key";
IF r% > 1000 THEN

CLS
PRINT "Exited on..."
PRINT "Loop = " ; r%;
EXIT DO

ELSEIF k% THEN
IF k% = 1 THEN

aKey$ = "SCAN"
ELSEIF k% = 2 THEN

aKey$ = "UP"
ELSEIF k% = 4 THEN

aKey$ = "DOWN"
ENDIF
CLS
PRINT "You pressed the"
PRINT aKey$;" Button";
EXIT DO

ENDIF
LOOP
SLEEP 0

Chapter 4 Statement & Function Reference 91

FOR...NEXT Statement

• Action

Allows a series of instructions to be performed in a loop a given number
of times.

• Syntax

FOR counter% = start% TO end% [STEP increment%]
.
.
.
NEXT [counter%]

• Parameters

Argument Description
counter% An integer variable used as the loop counter. The variable

cannot be a record array.
start% The initial value of the counter as an integer.
end% The final value of the counter as an integer.
increment% The amount the counter is incremented each time through the

loop as an integer. This must be a constant expression.

• Remarks

The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the loop counter (counter%) is
adjusted by the amount specified by STEP (increment%), and compared
with the final value (end%). (If you do not specify STEP, the increment
is assumed to be one.) If the loop counter (counter%) is still not greater
than the final value (end%), the control branches back to the statement
after the FOR statement and the process is completed. When the loop
counter (counter%) is greater than the final value (end%), execution
continues with the statement following the NEXT statement.

92 Chapter 4 Statement & Function Reference

If STEP (increment%) is negative, the loop counter (counter%) is
decreased each time through the loop, and the loop executes until the
counter is less than the final value (end%).

If the starting value (start%) is greater than the ending value (end%), the
loop does not execute at all. The following loop executes zero times:

FOR I=3 TO 2
PRINT I

NEXT I

Do not change the value of a loop variable within the loop. Changing the
value can make the program more difficult to read and debug.

Assignment to the counter variable within the loop will have
unpredictable results.

If the name of a variable is used for the TO or STEP variable
expressions, then assignment to that variable within the loop will have
unpredictable results.

The following code fragment illustrates the problems:

FOR count% = 1 TO ending% STEP stepping%
count% = 10 REM This is bad!
ending% = 10 REM This is bad!
stepping% = 10 REM This is bad!

NEXT count%

See also DO...LOOP and WHILE...WEND.

• Example

REM FOR...NEXT Statement
DIM i%
PRINT " Euro "
PRINT " Sound ";
FOR i% = 1 TO 4

SOUND 4800, 500 '(frequency range 50–8000)
SOUND 3300, 500 '(duration range 1–2000(2 seconds))

NEXT i%

Chapter 4 Statement & Function Reference 93

Nested Loops

You can nest FOR...NEXT loops; in other words, you can place a
FOR...NEXT loop within another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable name as its counter. The
NEXT statement for the inside loop must appear before the NEXT
statement for the outside loop. The following construction is the correct
form:

FOR I = 1 TO 10
FOR J = 1 TO 10

FOR K = 1 TO 10
.
.
.
NEXT K

NEXT J
NEXT I

The EXIT FOR provides a convenient alternative exit to FOR...NEXT
loops. See the EXIT statement for more information.

94 Chapter 4 Statement & Function Reference

GOSUB...RETURN Statement

• Action

Branches to, and returns from a subroutine.

• Syntax

GOSUB label
.
.
.
RETURN

• Parameters

Argument Description
label The line label that is the first line of the subroutine.

• Remarks

Care must be taken not to execute a RETURN statement without first
executing a GOSUB statement.

The program returns to the statement after the GOSUB statement.

You may call a subroutine any number of times in a program. You may
also call a subroutine from within another subroutine. How deeply you
can nest subroutines is limited only by the available stack space.

A subroutine may contain more than one RETURN statement. A
RETURN statement in a subroutine makes BASIC branch back to the
statement following the most recently executed GOSUB statement.

Subroutines may appear anywhere in the program, but it is good
programming practice to make them readily distinguishable from the
main program. To prevent inadvertent entry into a subroutine, precede it
with an END or GOTO statement that directs program control around
the subroutine.

Chapter 4 Statement & Function Reference 95

• Example 1

REM GOSUB...RETURN Statement example 1

PRINT "main code";
SLEEP 0
GOSUB Sub1
Label1:

CLS
PRINT "back in main code";
SLEEP 0
END

Sub1:
CLS
PRINT "in sub 1";
SLEEP 0
GOSUB Sub2

Label2:
CLS
PRINT "back in sub 1";
SLEEP 0
RETURN

Sub2:
CLS
PRINT "in sub 2";
SLEEP 0
RETURN

Output:

main code
in sub 1
in sub 2
back in sub 1
back in main code

96 Chapter 4 Statement & Function Reference

• Example 2

REM GOSUB...RETURN Statement example 2
DIM m%
CONST M1$ = "UP for Help"
CONST M2$ = "DOWN to Quit"
PRINT M1$
PRINT M2$;
DO

GOSUB getMenu
LOOP
END

getMenu:
m% = 0
WHILE m% = 0

m% = ASC(INKEY$())
WEND
CLS
IF m% = 1 THEN rem scan button

PRINT " Wrong "
PRINT " Button! ";
BEEP
BEEP

ELSEIF m% = 2 THEN rem up button
PRINT "Help";

ELSEIF m% = 4 THEN rem down button
PRINT "Press Again"
PRINT "to clear screen";
SLEEP 5
END

ENDIF
SLEEP 3
CLS
PRINT M1$
PRINT M2$;
RETURN

Chapter 4 Statement & Function Reference 97

GOTO Statement

• Action

Branches unconditionally to the specified line.

• Syntax

GOTO label$

• Parameters

Argument Description
label$ Line label to branch to.

• Remarks

The GOTO statement provides a way to branch unconditionally to
another line (label$).

It is good programming practice to use structured control statements
(DO...LOOP, FOR...NEXT, IF...THEN...ELSE) instead of GOTO
statements because a program with many GOTO statements is difficult
to read and debug.

98 Chapter 4 Statement & Function Reference

• Example

rem GOTO Statement: This is a good example of how a control
rem structure, DO...LOOP, could be used instead of a GOTO.

DIM s%, k%, a%
k% = 0
s% = 0
a% = 0
PRINT "Press SCAN."
Start:
DO

k% = ASC(INKEY$())
IF k% > 0 THEN EXIT DO

LOOP
IF k% = 1 THEN

BEEP
END

ELSEIF k% = 2 THEN rem up arrow increases
s% = s% + 5

ELSEIF k% = 4 THEN rem down arrow decreases
IF s% > 5 THEN
s% = s% - 5

ENDIF
ENDIF

a% = s% * s% rem This example calculates
rem the area of a square.

CLS
PRINT "Sides = ";s%
PRINT "Area = "; a%;
SLEEP 0

GOTO Start

Chapter 4 Statement & Function Reference 99

HEX$ Function

• Action

Produces a string of hexadecimal digits to represent a one-byte or two-
byte integer value. (Videx BASIC) (Note: This function is not supported
by the Macintosh version of the Videx BASIC compiler.)

• Syntax

result$ = HEX$ (value%, num_digits%)

• Parameters

Argument Description
value% The integer value to be converted to hexadecimal.
num_digits% Number of characters to convert (0 to 4). If zero is specified,

only the number of digits necessary to represent the value
without leading zeros will be converted.

• Remarks

This function works similarly to the CHR$ function but produces a
string of hexadecimal digits (containing twice as many characters) that
can represent binary numbers.

The characters will always be counted from the least-significant nibble
(4 bits) of value%. The more significant characters are leftmost in the
string produced. For example, if value% is equal to 2748 (0ABC hex)
the resulting strings for all the values of num_digits% are:

num_digits% result$
0 ABC
1 C
2 BC
3 ABC
4 0ABC

100 Chapter 4 Statement & Function Reference

The compiler flags any out-of-range values for num_digits%. If the
parameter is supplied by a variable, any out-of-range values are forced
into range by the formula:

 good = ((bad - 1) MOD 4) + 1

For example, a value of 5 becomes 1 (see Example 1) and a value of 19
becomes 3 (see Example 2).

• = Example 1

 good = ((5 - 1) MOD 4) + 1
 good = (4 MOD 4) + 1
 good = (0) + 1
 good = 1

• = Example 2

 good = ((19 - 1) MOD 4) + 1
 good = (18 MOD 4) + 1
 good = (2) + 1
 good = 3

Note: MOD arithmetic provides the remainder of an integer division,
rather than the quotient. For example: 16 MOD 5 = 1: 16 ÷ 5 = 3 with a
remainder 1; 3250 MOD 256 = 178: 3250 ÷ 256 = 12 with a remainder
of 178. See page 18 for complete information on MOD arithmetic.

Strings in Videx BASIC are null-terminated; that is, the character with
the value zero has the special function of designating the end of the
string. Because of that special designation, there is no way to include a
character with the value zero within the string. In working with some
types of data, for example, information stored in Touch Memory buttons,
it is sometimes desirable to be able to handle strings of bytes that may
contain binary information. The occurrence of bytes with a zero value is
likely, so trying to use normal Videx BASIC strings for manipulating
binary data would cause the data to be truncated at the first occurrence
of a zero byte. Converting binary values to pairs of hexadecimal digits
provides a way of transmitting binary information within a string.

See also BIN and TOUCH.

Chapter 4 Statement & Function Reference 101

• Returns

Returns a string that is the hexadecimal representation of value% with a
specified number of characters.

• Example

REM BIN()and HEX$ Functions

DIM hex_data$ * 4
DIM i%, number%

FOR i% = 1 to 10

number% = i% * 50
hex_data$ = HEX$ (number%, 0) 'convert to hex
CLS
PRINT str$ (number%); " in hex:"
PRINT hex_data$; 'display result
SLEEP 0
number% = bin (hex_data$, 0) 'convert back to decimal
CLS
PRINT hex_data$; " as decimal:"
PRINT str$ (number%); 'display result
SLEEP 0

NEXT i%
END

102 Chapter 4 Statement & Function Reference

IF...ELSEIF...ELSE...ENDIF Statement

• Action

Allows conditional execution and branching.

• Syntax 1 (single line)

IF Booleanexpression% THEN thenpart

• Syntax 2 (block)

IF Booleanexpression1% THEN
 [statementblock-1]
[ELSEIF Booleanexpression2% THEN
 [statementblock-2]]
.
.
.
[ELSE
 [statementblock-n]]
ENDIF

• Parameters 1 (single line)

The following list describes the parts of the single-line form:

Argument Description
Booleanexpression% Any expression that evaluates to true (nonzero) or

false (zero).
thenpart The statements or branches performed when

Booleanexpression% is true (thenpart). The syntax
is described below.

The thenpart has the following syntax:

{ statements | GOTO linelabel }

Chapter 4 Statement & Function Reference 103

The following list describes the parts of the thenpart syntax:

Argument Description
statements One or more BASIC statements, separated by colons (:).
linelabel A valid BASIC line label.

Note that GOTO is required with a line label.

Unlike other BASIC implementations, there is no ELSE clause, and only
one statement may follow THEN.

• Parameters 2 (block)

The following list describes the parts of the block form:

Argument Description
Booleanexpression1,
Booleanexpression2

Any expression that evaluates to true (nonzero) or
false (zero).

statementblock-1,
statementblock-2,
statementblock-n

One or more BASIC statements on one or more lines.

BASIC executes a block form IF by testing the first Boolean expression
(Booleanexpression1). If the Boolean expression is true (nonzero), the
statements following THEN are executed. If the first Boolean
expression is false (zero), each ELSEIF condition is evaluated in turn.
When a true condition is found, the statements following the associated
THEN are executed. If none of the ELSEIF conditions are true, the
statements following the ELSE are executed. After the statements
following a THEN or ELSE are executed, the program continues with
the statement following the ENDIF.

The ELSE and ELSEIF blocks are both optional. You can have as many
ELSEIF clauses as you want in a block IF.

Any of the statement blocks can contain nested block IF statements.

BASIC looks at what appears after the THEN keyword to determine
whether or not an IF statement is a block IF. If anything other than a

104 Chapter 4 Statement & Function Reference

comment appears after THEN, the statement is treated as a single-line
IF statement.

The block must end with an ENDIF statement.

ENDIF and ELSEIF statements may contain an optional space; for
example: END IF, ELSE IF.

• Remarks

An IF statement can have any number of ELSEIF clauses, but only one
ELSE clause. Both the ELSEIF and ELSE clauses are optional.

The single-line form of the statement is best used for short,
straightforward tests where only one action is taken.

The block form provides several advantages:

• = It provides more structure and flexibility than the single-line form by

allowing conditional branches across several lines.

• = It can test for more complex conditions.

• = It lets you use the THEN...ELSE portion of the statement.

• = It allows your program’s structure to be guided by logic rather than

by how many statements fit on a line.

Programs that use block-form IF...THEN...ELSE are usually easier to
read, maintain, and debug.

The single-line form is never required. Any program using single-line
IF...THEN statements can be written using the block form.

Note: The syntax of the single-line form is somewhat different in Videx
BASIC than in QuickBASIC.

• Example

See the GOTO example.

Chapter 4 Statement & Function Reference 105

INKEY$ Function

• Action

Retrieves and returns a character from the keyboard buffer.

• Syntax

thekey$ = INKEY$()

• Parameters

None

• Remarks

The INKEY$ function returns a one-byte string containing a character
read from the input device, or a null string if no character is waiting. The
one-character string contains the actual character read from the
keyboard. The standard input device is the keyboard. INKEY$ does not
echo characters to the screen. (Note: Key combinations are not
supported.)

See also ASC and VAL.

• Returns

A one-byte string containing a character read from the input device or a
null string if no character is waiting. The one-character string contains
the actual character read from the keyboard.

The following two tables list the keys and their corresponding ASCII
values:

DuraTrax/LaserLite Keys

Key ASCII Value
Scan button 1
Scroll up 2
Scroll down 4

106 Chapter 4 Statement & Function Reference

LaserLite Pro/LaserLite Mx Keys

Key ASCII Value Key ASCII Value
SHIFT (Unshifted) 128
SHIFT (Shifted) 129 A 65
Scan button 1 B 66
ESC 27 C 67
ENTER 13 (Carriage return) D 68
Backspace 8 E 69
0 48 F 70
1 49 G 71
2 50 H 72
3 51 I 73
4 52 J 74
5 53 K 75
6 54 L 76
7 55 M 77
8 56 N 78
9 57 O 79
- 45 P 80
. 46 Q 81
+ 43 R 82
* 42 S 83
/ 47 T 84
Scroll left 130 U 85
Scroll right 131 V 86
Scroll up 2 W 87
Scroll down 4 X 88
F1 134 Y 89
F2 135 Z 90
F3 136 Space 32
F4 137 MEM 132
F5 138 BAT 133

• Example

See the GOTO example.

Chapter 4 Statement & Function Reference 107

INPUT$ Function

• Action

Returns a string of characters read from a specified file.

• Syntax

data$ = INPUT$ (n%, filenumber%)

• Parameters

Argument Description
n% The number of bytes to return; this is also the number of

bytes the current file position is advanced.
filenumber% The file number used in the OPEN statement.

• Remarks

Reads n% bytes from the sequential (data) file.

The file is always read directly into some string. If the string’s maximum
size is less than the number of requested bytes, then the input is
truncated to the maximum size of the string. The current file position is
always advanced by the number of bytes read, even if the input is
truncated.

If INPUT$ is used directly in an assignment statement, then the data is
read directly into the assigned string. For example, in the following code
sample, a string is allocated with a maximum size of 48 bytes. Then, 48
bytes are read from file 0, and the file position is advanced by 512 bytes.

DIM data$ * 48
data$ = INPUT$ (512, 0)

108 Chapter 4 Statement & Function Reference

If INPUT$ is used in an expression, then the data is read into a
temporary string with maximum size of 128. For example, in the
following code sample, a string is allocated with a maximum size of 512
bytes. Then, 128 bytes are read into a temporary string, and the file
position is advanced by 512 bytes. Finally, “suffix” is appended to the
temporary string and assigned to data$.

DIM data * 512
data$ = INPUT$ (512,0) + “suffix”

In general, it is best to allocate a string that is the same size as the
number of bytes you want to read, and then fill that string with an
assignment statement.

DIM data$ * 512
data$ = INPUT$ (512,0)

If you need to use an INPUT$ function in an expression, be sure to read
fewer than 128 bytes, so the input isn’t truncated.

See also OPEN.

The INPUT$ function is used to read from a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

• Returns

The character string read from the specified file.

• Example

See the EOF example.

Chapter 4 Statement & Function Reference 109

INPUTEVT Statement

• Action

Waits for an event from the data collector and returns information about
the event. (Videx BASIC)

• Syntax

INPUTEVT left%, top%, right%, bottom%, TYPE%, SYMBOLOGY%,
DEVICE%, DATA$

• Parameters

Argument Description
left% An integer expression that represents the left side of the

screen rectangle where data entry occurs.
top% An integer expression that represents the top of the screen

rectangle where data entry occurs.
right% An integer expression that represents the right side of the

screen rectangle where data entry occurs.
bottom% An integer expression that represents the bottom of the

screen rectangle where data entry occurs.
TYPE% Variable that returns the type of event.
SYMBOLOGY% Variable that returns the bar code’s symbology.
DEVICE% Variable that returns how the data was captured.
DATA$ String that contains the entered data (max 64 characters).

• Remarks

The four parameters (left%, top%, right%, and bottom%) define an area
on the display for keypad or scanpad data entries. The rectangle 0, 0, 16,
2 is 16 characters wide, 2 characters tall, and starts in the upper-left
corner. Rows and columns are numbered starting at zero, and right% and
bottom% can be thought of as the first column and row that are NOT in
the input area. If all four parameters are set to zero, it is still possible to
enter data using the laser, contact bar code scanner, or Touch Memory
button reader. If all four parameters are set to zero and data is entered
using the keypad or scanpad, the data is accepted as single characters.

While waiting for an event, if nothing happens for 30 seconds,
INPUTEVT automatically puts the data collector to sleep. It then sleeps

110 Chapter 4 Statement & Function Reference

for 25 seconds and wakes for 5 seconds, without turning on the screen,
this sleep cycle continues until an event occurs.

In most cases, an array element can be used anywhere a variable can.
INPUTEVT is an exception; the last four arguments cannot be array
elements.

• Returns

The parameters TYPE%, SYMBOLOGY%, DEVICE%, and DATA$ must
be variables. Values are assigned depending on the event that occurs.

TYPE% can be one of:

TYPE% Event
1 Input
2 Exit
3 Delete last input (5 space character bar code scanned)
4 Scroll up key pressed
5 Scroll down key pressed
6 Power off
7 Unexpected power loss detected (occurs if the lock switch is

not turned off before replacing the batteries)
8 LaserLite Pro or LaserLite Mx ESC key (escape) pressed
9 Scan key pressed and released

10 LaserLite Mx no memory card module found
11 LaserLite Mx no memory card found
12 LaserLite Mx unknown memory card found
13 LaserLite Mx memory card ID has changed
14 LaserLite Mx memory card processor interrupted
18 LaserLite Pro or LaserLite Mx scroll left key pressed
19 LaserLite Pro or LaserLite Mx scroll right key pressed
20 LaserLite Pro or LaserLite Mx MEM key (memory) pressed
21 LaserLite Pro or LaserLite Mx BAT key (battery) pressed
22 LaserLite Pro or LaserLite Mx f1 key pressed
23 LaserLite Pro or LaserLite Mx f2 key pressed
24 LaserLite Pro or LaserLite Mx f3 key pressed
25 LaserLite Pro or LaserLite Mx f4 key pressed
26 LaserLite Pro or LaserLite Mx f5 key pressed

Chapter 4 Statement & Function Reference 111

LaserLite Mx uses all of the TYPE% events; DuraTrax and LaserLite use
events 1–7 and 9; and the LaserLite Pro uses 1–9 and 18–26.

Note: Event 7 (unexpected power loss detected) is not always detected
by the operating system. If event 7 occurs, the application starts running
from the beginning and sometimes returns with event 7 the first time it
executes INPUTEVT. Any data not yet written to the data file is lost.

DEVICE% can be one of:

1 keyboard
2 laser

12 contact scanner
48 button touch

SYMBOLOGY% can be one of:

1 Code 39
2 UPC-A or UPC-E
4 Interleaved 2 of 5
8 Codabar

16 EAN
64 UCC Code 128 (starts with reserved character Fn1)

128 Code 128 (standard: no Fn1 character at start)

DATA$ is a string containing the data which is entered. The maximum
number of characters in this string is 64; longer input strings are not
supported by the operating system.

If TYPE% is 1, then the user has entered data. DEVICE% gets the device
that was used to enter it, SYMBOLOGY% gets the symbology of the
entered data, and DATA$ gets the entered data.

112 Chapter 4 Statement & Function Reference

• Example

REM INPUTEVT Statement
'*
'* Reports the origin of data.
'*
CONST NL$ = CHR$(13) + CHR$(10)

'carriage return/line feed combination
running% = 1
display$ = "Waiting for " + NL$ + "you.... "

'preprompt user
WHILE running% 'event loop

CLS
PRINT display$; 'display a prompt
INPUTEVT 0, 0, 0, 0, type%, symbol%, device%, data$

'get event
ON type% GOSUB fn_null, fn_input, fn_exit, fn_null, fn_up, fn_dn, fn_power

WEND
END
fn_null: 'description: Do nothing function.

RETURN

'*
'* fn_input
'* description: Respond to a user input event. Beeps and
'* blinks the Valid Scan LED, and then appends the input
'* to end of the data file, along with current date and
'* time.
'*

fn_input:

OPTION(258) = 1 'turn on the LED
SOUND 2933, 250 'good beep
OPTION(258) = 0 'turn off the LED
GOSUB get_origin
display$ = origin$ + NL$ + data$ 'display input on screen

RETURN

fn_exit: 'Respond to an exit event
running% = 0 'Exit events are generated when an unlock

RETURN 'command is sent to the unit during an
'INPUTEVT statement

fn_up: 'Respond to a scroll-up event, notify
SOUND 3000, 225 'user that we got the keypress

RETURN

fn_dn: 'Respond to a scroll-down event, notify
SOUND 1000, 225 'user that we got the keypress

RETURN

Chapter 4 Statement & Function Reference 113

'*
'* fn_power
'* description: Respond to a power event. These events
'* are generated when the power switch is turned off.
'* Respond by putting the data collector into a low-power
'* state.
'*

fn_power:

OPTION(256) = 0 'turn off the LCD (not needed for Mx)
SOUND 4300, 500
SOUND 3300, 500
SOUND 2300, 500
SOUND 1300, 500
SLEEP 0 'sleep indefinitely
OPTION(256) = 1 'turn LCD back on (not needed for Mx)

RETURN

get_origin:

IF device% = 1 THEN
origin$ = "keyboard"

ELSEIF device% and 14 THEN 'laser or contact scanner
IF symbol% = 1 THEN

origin$ = "USS-39"
ELSEIF symbol% = 2 THEN

origin$ = "UPC"
ELSEIF symbol% = 4 THEN

origin$ = "USS-I 2/5"
ELSEIF symbol% = 8 THEN

origin$ = "Codabar"
ELSEIF symbol% = 16 THEN

origin$ = "EAN"
ELSEIF symbol% = 64 THEN

origin$ = "UCC Code 128"
ELSEIF symbol% = 128 THEN

origin$ = "USS 128"
ELSE

origin$ = "unknown"
ENDIF

ELSEIF device% and 48 THEN 'touch button
origin$ = LEFT$(data$, 2) 'get the family code, add 30
origin$ = "button type " + STR$(30 + VAL(origin$))
data$ = RIGHT$(data$, 12) 'convert data into ROM code

ELSE
origin$ = "unknown"

ENDIF
RETURN

114 Chapter 4 Statement & Function Reference

INSTR Function

• Action

Returns the character position of the first occurrence of a string in
another string.

• Syntax

position% = INSTR ([start%,] stringexpression1$, stringexpression2$)

• Parameters

Argument Description
start% An optional offset that sets the position for starting the

search; start% must be an integer in the range 1–
32767. If start% is not given, the INSTR function
begins the search at the first character of
stringexpression1$.

stringexpression1$ The string being searched.
stringexpression2$ The string to search for.

The arguments stringexpression1$ and stringexpression2$ can be string
variables, string expressions, or string literals.

See also LEN, MID$, LEFT$, and RIGHT$.

• Remarks

Searches for an occurrence of stringexpression2$ in stringexpression1$.

Use the LEN function to find the length of stringexpression1$.

Chapter 4 Statement & Function Reference 115

• Returns

The value returned by INSTR depends on the following conditions:

Condition Returned Value
stringexpression2$ found in
stringexpression1$

The position where the match is
found.

start% greater than length of
stringexpression1$

0

stringexpression1$ is null string 0
stringexpression2$ cannot be found 0
stringexpression2$ is null string start% (if given); otherwise 1

• Example

REM INSTR() Function

data$ = "two words"
CLS
PRINT "Splitting..."
PRINT data$;
SLEEP 3
blankPosition% = INSTR(1,data$," ")
firstWord$ = LEFT$(data$,blankPosition%-1)
secondword$ = RIGHT$(data$,LEN(data$) - blankPosition%)
CLS
PRINT "Word 1 is ";firstWord$
PRINT "Word 2 is ";secondWord$;
SLEEP 3
END

Output:

Splitting...
two words
Word 1 is two
Word 2 is words

116 Chapter 4 Statement & Function Reference

LCASE$ Function

• Action

Returns a string with all letters in lowercase.

• Syntax

word$ = LCASE$ (stringexpression$)

• Parameters

Argument Description
stringexpression$ The string to lowercase. This can be a string variable,

string constant, or string expression.

• Remarks

LCASE$ is helpful in string comparison operations where tests need to
be case insensitive.

See also UCASE$.

• Returns

The string in lowercase letters.

• Example

REM LCASE$() Function

word$ = "LOWERCase"
PRINT word$
word$ = LCASE$(word$)
PRINT word$;
SLEEP 0

Output:
LOWERCase
lowercase

Chapter 4 Statement & Function Reference 117

LEFT$ Function

• Action

Returns a string that is composed of the leftmost characters in the string
argument.

• Syntax

word$ = LEFT$ (stringexpression$, n%)

• Parameters

Argument Description
stringexpression$ Any string variable, string constant, or string

expression.
n% An integer expression (range 0–32767) indicating how

many characters are to be returned.

• Remarks

See also INSTR, LEN, MID$, and RIGHT$.

• Returns

If n% is greater than the number of characters in stringexpression$, the
entire string is returned. To find the number of characters in
stringexpression$, use the LEN function.

If n% is zero, a null string (length zero) is returned.

118 Chapter 4 Statement & Function Reference

• Example 1

REM LEFT$() Function example 1

word$ = "BASIC LANGUAGE"
PRINT word$
B$ = LEFT$(word$,5)
'get first 5 characters (should be BASIC)
PRINT B$;
SLEEP 0 'pause display until keypress
B$ = RIGHT$(word$,8)
'get last 8 characters (should be LANGUAGE)
LOCATE 1,0
PRINT B$;
SLEEP 0 'pause display until keypress

Output:
BASIC LANGUAGE
BASIC
LANGUAGE

• Example 2

REM LEFT$() Function example 2

data$ = "two words"
CLS
PRINT "Splitting..."
PRINT data$;
SLEEP 3 'pause display for 3 seconds or keypress
blankPosition% = INSTR(1,data$," ")
firstWord$ = LEFT$(data$,blankPosition%-1)
secondword$ = RIGHT$(data$,LEN(data$) - blankPosition%)
CLS
PRINT "Word 1 is ";firstWord$
PRINT "Word 2 is ";secondWord$;
SLEEP 3
END

Output:
Splitting...
two words
Word 1 is two
Word 2 is words

See also INSTR example.

Chapter 4 Statement & Function Reference 119

LEN Function

• Action

Returns the number of characters in a string.

• Syntax

length% = LEN (stringexpression$)

• Parameters

Argument Description
stringexpression$ Any string variable, string constant, or string expression.

• Remarks

See also INSTR, LEFT$, MID$, and RIGHT$.

• Returns

The number of characters in the argument stringexpression$.

• Example

REM LEN() Function

LET word$ = "Videx DuraTrax"
PRINT word$
lenWord% = LEN(word$)
length$ = STR$(lenWord%)
PRINT "is "; length$; " chars.";
SLEEP 0 'pause display until keypress

Output:
Videx DuraTrax
is 14 chars.

120 Chapter 4 Statement & Function Reference

LET Statement

• Action

Assigns the value of an expression to the named variable.

• Syntax 1

 [LET] variable$ = stringexpression$

• Syntax 2

 [LET] variable% = integerexpression%

• Parameters

Argument Description
variable$ The name of a string variable where the result of the

string expression will be copied.
variable% The name of an integer variable to receive the value of

the integer expression.
stringexpression$ A string constant, variable, or single value obtained by

combining constants, variables, and other expressions
with operators.

integerexpression% An integer constant, variable, or single value obtained
by combining constants, variables, and other
expressions with operators.

Chapter 4 Statement & Function Reference 121

• Remarks

The keyword LET is optional. The equal sign in the statement is enough
to inform BASIC that the statement is an assignment statement.
However, it is somewhat faster to compile code that uses the LET
statement and the compiled program is identical. Both stringvariable$
and integervariable% can be an element of an array.

The corresponding lines, in the following two program fragments,
perform the same functions:

LET D=12
LET E=12-2
LET F=12-4
LET SUM=D+E+F
.
.
.

D=12
E=12-2
F=12-4
SUM=D+E+F
.
.
.

• Example

REM LET() Statement

LET newLine$ = CHR$(13) + CHR$(10) 'carriage return/
'line feed combination

PRINT "Line 1"; newLine$; "Line 2";
SLEEP 0 'pause display until keypress

Output:

Line 1
Line 2

122 Chapter 4 Statement & Function Reference

LOCATE Statement

• Action

Moves the cursor to the specified row and column.

• Syntax

LOCATE row%, column%

• Parameters

Argument Description
row% The number of a row on the screen; row% is an integer number.
column% The number of a column on the screen; column% is an integer

number.

• Remarks

The rows and columns are numbered from 0. The first character of the
next PRINT statement will be at the designated location.

• Example 1

LOCATE 0,0 'Moves cursor to the upper-left corner (1st

'character position) of the first line on the
'display.

LOCATE 1,5 'Moves cursor to the 6th character position of
'the second line on the display.

• Example 2

REM LOCATE Statement
PRINT "This line fixed" 'displayed on line 1
PRINT "This line changes..."; 'displayed on line 2
SLEEP 0
FOR i% = 1 TO 10

LOCATE 1,0 'position cursor at start of line 2
PRINT "New Line ";i%;" "; 'print on line 2
SLEEP 1 'a 1 second delay for reading

NEXT i%
SLEEP 0 'press key to exit

Chapter 4 Statement & Function Reference 123

LOF Function

• Action

Returns the length of the file in bytes. If the length of the file is greater
than 32767, only the low-order word of the length is returned.

• Syntax

fileLen% = LOF (filenumber%)

• Parameters

Argument Description
filenumber% The number of the file used in the OPEN statement.

• Remarks

See also EOF, LOFH, OPEN, and SEEK.

• Returns

For files opened as reference, returns the total number of records in the
file.

For sequential (data) files, returns the size of the file MOD 32768.

The LOF function is used to check the length of a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

The following two examples each have a program line that is longer than
the width of the page; so, we will use the pipe (|) character as an
indication that the program line continues.

124 Chapter 4 Statement & Function Reference

• Example 1

REM LOF() Function example 1
'* This example creates a new file with 70,000 bytes,
'* works around the short integer limit, and prints
'* file size as two integers (an integer that is a
'* multiple of 32678, and an integer of the remaining
'* bytes before the next multiple integer).
'* It also reports the data collector's remaining memory.
myFile$ = "data.txt"
multipleLen% = 0
byteLen% = 0
PRINT "Building file"
PRINT "Please wait";
OPEN myFile$ FOR APPEND AS #0 'this is output file
FOR i% = 1 TO 700
'write 700 lines with 100 bytes to the file

PRINT #0,"012345678901234567890123456789012345678901234|
56789012345678901234567890123456789012345678901234567890"
NEXT i%
CLOSE #0
CLS
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
OPEN myFile$ FOR APPEND AS #0 'this is input file
multipleLen% = LOFH (0) 'this is a multiple of 32768
byteLen% = LOF (0) 'this is the number of bytes

'before the next multiple
CLS
PRINT "Len = ";multipleLen ; " X 32,768"
PRINT "+ " ; byteLen;
SLEEP 0
CLS
PRINT "Memory is"
PRINT ENVIRON$(1);
SLEEP 0
CLOSE #0

Chapter 4 Statement & Function Reference 125

• Example 2

REM LOF() Function example 2
'* This example illustrates the use of LOF to determine
'* the number of records in a file opened for reference.
'* Note: Requires the Lof2.crf to be loaded with the
'* example.

refFile$ = "LOF2.CRF"
nl$ = CHR$(13) + CHR$(10)
OPEN refFile$ FOR REFERENCE as #1

IF ERR THEN
PRINT "Can't open file"; nl$; refFile$;
SLEEP 0
END

ENDIF
recLen% = LOF (1) 'this is number of records in file
PRINT refFile$;" has..."; nl$; recLen%; "total records.";

SLEEP 0
CLOSE #1
END

126 Chapter 4 Statement & Function Reference

LOF Statement

• Action

Sets the size of the file.

• Syntax

LOF (filenumber%) = [intexpr2% ,] intexpr3%

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.
intexpr2% Whole number multiple of 32768.
intexpr3% Remainder over whole number multiple.

• Remarks

The LOF statement is useful for clearing or truncating a file.

For sequential (data) files, the LOF statement sets the size of the file. If
the first argument isn’t used, it is assumed to be 0. The total size of the
file is set to intexpr2% * 32768 + intexpr3%.

Note: If either argument is negative, the results are undefined.

The LOF statement is used to set the size of a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

Chapter 4 Statement & Function Reference 127

• Example

REM LOF() Statement
myFile$ = "data.txt"
PRINT "Building file."
PRINT "Please wait.";
OPEN myFile$ FOR APPEND AS #0 'this is output file
FOR i% = 1 TO 3000
'write 3000 lines with 10 bytes to the file

PRINT #0, "012345678901234567890"
NEXT i%
CLOSE #0
CLS
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
OPEN myFile$ FOR APPEND AS #0 'this is input file
byteLen% = LOF (0) 'get length of file
CLS
PRINT "length is " ; byteLen
PRINT "purging last 1/2";
SLEEP 0
LOF (0) = byteLen%/2 'set file length to 1/2
CLS
byteLen% = LOF (0) 'get length of file now
PRINT "length is " ; byteLen
PRINT "Clearing it.";
SLEEP 0
LOF (0) = 0 'set file length to zero and clears

'contents
CLOSE #0

128 Chapter 4 Statement & Function Reference

LOFH Function

• Action

Returns the high-order word of the number of bytes in the numbered file.

• Syntax

multipleLen% = LOFH (filenumber%)

• Parameter

Argument Description
filenumber% The file number used in the OPEN statement.

• Remarks

For sequential (data) files, returns the size of the file / 32768. Since an
integer can only represent numbers in the range -32768 to 32767, and
files can be much larger than that, the size of a file must be represented
with two integers. The true size of the file is:

LOFH () * 32768 + LOF ()

See also EOF, LOF function, OPEN, and SEEK.

The LOFH function is used to check the length of a file in RAM. See
the CARDCMD statement to work with files on the LaserLite Mx
memory card.

• Returns

The size of the file as an integer.

• Example

See the LOF function example number 1.

Chapter 4 Statement & Function Reference 129

LOOK$ Function

• Action

Returns the data from a designated field in a cross-reference file. The
structure of a cross-reference file is composed of four fields: Input (key
field), Field1, Field2, and Field3. (Videx BASIC)

• Syntax

fieldDesc$ = LOOK$ (fieldnum%)

• Parameters

Argument Description
fieldnum% The field value to be returned. If fieldnum% is 0 then the key

field itself is returned.

• Remarks

LOOK$ and LOOKUP are used in a program to retrieve data from a
cross-reference file. LOOKUP is used first, then LOOK$. LOOKUP
designates which file number to look in and what data to look for. When
LOOKUP finds the data, it returns the data’s row number and sets a
pointer to that row in the cross-reference file. LOOK$ is then used to
designate the column of the cross-reference file that contains the data.

130 Chapter 4 Statement & Function Reference

For example, using the cross-reference file below:

 0 1 2 3
 Input (key field) Field1 Field2 Field3
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5

The following program line:

rec% = LOOKUP (filenumber%, A3)

would search for A3 in the file, which it finds in row 3; rec% is now
equal to 3. The next program line:

fieldDesc$ = LOOK$ (1)

would go to column 1 of the row designated in LOOKUP and return its
value; in this case, it would return B3; fieldDesc$ is now equal to B3.

If the user assumes the wrong number of fields in a cross-reference file,
then the results are unpredictable.

Note: You can actually use cross-reference files with up to 16 fields by
using Vxcrf.exe. See the DuraTrax, LaserLite, & LaserLite Pro
Developer’s Reference Manual for information on using Vxcrf.exe.

See also LOOKUP and OPEN.

The LOOK$ function is used with cross-reference files in RAM. See the
CARDCMD statement to work with cross-reference files on the
LaserLite Mx memory card.

• Returns

If LOOKUP returns a nonzero value, then LOOK$(n) returns the nth
value associated with the found key in the file. LOOK$(0) returns the
key field itself. If LOOKUP returns 0, then the value of LOOK$() is
undefined.

Chapter 4 Statement & Function Reference 131

• Example

REM LOOK$() Function and LOOKUP Function
'* This example looks up data$ in the LOF2.CRF file and if
'* matched, displays the data$ that was searched for, the
'* record number of the matching entry, and the field being
'* displayed (these 3 values are displayed on line 1). Line
'* 2 displays the actual description of each field.
'* NOTE: You may in turn use rec% to quickly find the
'* index record for editing by using the following syntax:
'* rec% = LOOKUP(1,rec%)
data$ = "5E"
OPEN "LOF2.CRF" FOR REFERENCE AS #1 'open cross-ref file

IF ERR THEN
GOSUB crf_error 'if missing, give an error

ENDIF
rec% = LOOKUP(1, data$) 'look for the data$ (5E) in

'the input field of file and
'store its record number

IF rec% THEN 'found it
BEEP 'so let them know with a beep
field1$ = LOOK$(1) 'get description from field1
CLS
PRINT data$;" #";rec%;" Fld 1"
PRINT field1$;
SLEEP 5
field2$ = LOOK$(2) 'get description from field2
CLS
PRINT data$;" #";rec%;" Fld 2"
PRINT field2$;
SLEEP 5
field3$ = LOOK$(3) 'get description from field3
CLS
PRINT data$;" #";rec%;" Fld 3"
PRINT field3$;
SLEEP 5

ENDIF
END

crf_error:
BEEP
CLS
PRINT "Could not open"
PRINT "LOF2.CRF";
SLEEP 2
RETURN

132 Chapter 4 Statement & Function Reference

LOOKUP Function

• Action

Searches the specified cross-reference file for the specified key field and
sets the LOOK pointer to that row in the file. (Videx BASIC)

• Syntax

rec% = LOOKUP (filenumber%, (strexpr$ | intexpr%))

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.
strexpr$, intexpr% The data string (strexpr$) or the record number

(intexpr%) to look for.

• Remarks

The specified file must have been previously opened for reference, and
must be properly formatted as a reference file. (A properly formatted
cross-reference file is one that was created or opened with Application
Builder or converted with Vxcrf.exe or Vxcrfw.exe. See the DuraTrax,
LaserLite, & LaserLite Pro Developer’s Reference Manual for
information on Vxcrf.exe and Vxcrfw.exe.)

Each record in a reference file is randomly assigned a unique number
from 1 through n (where n is the number of records in the file). This
unique ID is returned from LOOKUP. If the second argument to
LOOKUP is an integer instead of a string, it looks up the record with
that unique ID (instead of searching for a key).

See also LOOK$ and OPEN.

The LOOKUP function is used to work with cross-reference files in
RAM. See the CARDCMD statement to work with cross-reference files
on the LaserLite Mx memory card.

Chapter 4 Statement & Function Reference 133

• Returns

If the key is found, its ID is returned; otherwise, 0 is returned.

• Example

See the LOOK$ example.

134 Chapter 4 Statement & Function Reference

LTRIM$ Function

• Action

Returns a copy of a string with leading spaces removed.

• Syntax

data$ = LTRIM$ (stringexpression$)

• Parameters

Argument Description
stringexpression$ Any string expression.

• Remarks

See also RTRIM$.

• Returns

Copy of string with no leading spaces.

Chapter 4 Statement & Function Reference 135

• Example

REM LTRIM$() Function and RTRIM$() Function
myFile$ = "data.txt"
LET NL$ = CHR$(13) + CHR$(10)
PRINT "Building file..."
PRINT "Please wait"
OPEN myFile$ FOR APPEND AS #0 rem this is output file
FOR i% = 1 TO 10 rem write 10 lines to file

data$ = "LINE" + STR$(i%) + "."
PRINT #0, data$

NEXT i%
CLOSE #0
CLS
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
dataLine$ = ""
OPEN myFile$ FOR APPEND AS #0 rem this is input file
SEEK #0,0
DO

data$ = TOKEN$ (0,NL$,0)
IF data$ = "" THEN EXIT DO
CLS
PRINT CHR$(34); data$; CHR$(34)
PRINT CHR$(34); LTRIM$(RTRIM$(data$)); CHR$(34);
SLEEP 1

LOOP
CLOSE #0
SLEEP 0

136 Chapter 4 Statement & Function Reference

MID$ Function

• Action

Returns a substring of a string.

• Syntax

result$ = MID$ (stringexpression$, start% [, length%])

• Parameter

Argument Description
stringexpression$ The string that the substring is extracted from; this can

be any string expression.
start% Designates the character position in the string expression

where the substring starts.
length% Designates the number of characters to extract.

• Remarks

The start% and length% arguments must be in the range of 1–32767. If
the length% argument is omitted or if there are fewer than length%
characters to the right of the start% character, the MID$ function returns
all characters to the right of the start% character.

If start% is greater than the number of characters in the string
expression, MID$ returns a null string.

Use the LEN function to find the number of characters in a string
expression.

See also LEFT$, LEN, MID$ statement, and RIGHT$.

• Returns

All characters to the right of the start% character.

Chapter 4 Statement & Function Reference 137

The following example has a program line that exceeds the width of the
page; so, we will use the pipe (|) character to indicate that the program
line continues.

• Example

REM MID$() Function
DIM toSend$ * 500
toSend$ = "Sending this sentence to the screen and out the|
serial port one character at a time."

PRINT "Press when..."
PRINT "ready.";
SLEEP 0
FOR i% = 1 TO LEN(toSend$)

theChar$ = MID$(toSend$,i%,1)
CLS
PRINT "Sending..."; theChar$;
COMMPRINT theChar$
GOSUB slow_down

NEXT i%
CLS
PRINT "Finished job"
SLEEP 0
END

slow_down: 'this subroutine is just a delay to
FOR r = 1 TO 200 'display the data longer
NEXT r
RETURN

138 Chapter 4 Statement & Function Reference

MID$ Statement

• Action

Replaces a portion of a string variable with another string.

• Syntax

MID$ (stringvariable$, start% [, length%]) = stringexpression$

• Parameters

Argument Description
stringvariable$ The string variable being modified.
start% A numeric expression giving the position in

stringvariable$ where the replacement starts.
length% The number of characters to replace. The length is a

numeric expression.
stringexpression$ The string expression that replaces part of the string

variable.

• Remarks

If length% is not specified, then substitution continues until the end of
either stringexpression$ or stringvariable$ is reached.

See also LEFT$, LEN, MID$ function, and RIGHT$.

• Example

REM MID$() Statement

LET test$ = "Paris, France"
LOCATE 0,0
PRINT test$
MID$(test$,8) = "Texas " 'replace the characters in test$,
LOCATE 1,0 'starting with the 8th char, with "Texas"
PRINT test$;
SLEEP 3 'pause display for 3 seconds or until keypress

Output:
Paris, France
Paris, Texas

Chapter 4 Statement & Function Reference 139

ON…GOSUB, ON...GOTO Statement

• Action

Branches to one of a list of subroutines, depending on the value of an
expression.

• Syntax 1

ON expression$ GOSUB label { , label }

• Syntax 2

ON expression$ GOTO label { , label }

• Parameters

Argument Description
expression$ Determines which label the program branches to.
label The subroutine to branch to.

• Remarks

The expression$ argument can be any numeric expression. If the value is
0, then the first subroutine is executed. If the value is 1, then the second
subroutine is executed, and so on.

The label arguments are a list of the subroutines separated by commas.

If the value of expression$ is out of range, then the line is skipped, and
the next line is executed.

The following example has a program line that exceeds the width of the
page; so, we will use the pipe (|) character to indicate that the program
line continues.

140 Chapter 4 Statement & Function Reference

• Example

REM ON...GOSUB Statement
'*
'* Monitors events in the data collector and calls
'* subroutines.
'*
CONST false = 0, true = Not false, NL$ = CHR$(13) + CHR$(10)
DIM display$ * 34
running% = true 'set running to true
display$ = "Waiting on you..." + NL$ + "P switch = exit"

'preprompt them
WHILE running% 'event loop

CLS
PRINT display$; 'display a prompt of some kind
INPUTEVT 0, 0, 0, 0, type%, symbol%, device%, data$

'get an event
ON type% GOSUB fn_null, fn_input, fn_exit, fn_null,|
fn_up, fn_dn, fn_power

WEND

END

fn_null: 'does nothing

RETURN

fn_input: 'an input routine goes here
CLS
BEEP
PRINT "Input routine"
SLEEP 2
RETURN

fn_exit: 'an exit routine goes here
running% = false%

RETURN

fn_up: 'a scroll up routine goes here
SOUND 2933, 125 'notify user that we got the keypress

RETURN

fn_dn: 'a scroll down routine goes here
SOUND 2933, 125 'notify user that we got the keypress

RETURN

fn_power:
OPTION(256) = 0 'turn off the LCD
SLEEP 0 'sleep indefinitely
OPTION(256) = 1 'turn the LCD back on

RETURN

Chapter 4 Statement & Function Reference 141

OPEN Statement

• Action

Opens named file.

• Syntax

OPEN file$ FOR (APPEND | REFERENCE) AS [#] filenumber%

• Parameters

Argument Description
file$ A string expression that specifies a filename.
filenumber% An integer expression between 0 and 31. When a OPEN is

executed, this number is associated with the file as long as it
is open. Other I/O statements may use the number to refer to
the file.

• Remarks

If the file is opened for APPEND, text data can be printed to the file. On
the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx it is only
possible to open a single file in RAM for append (this is the data file).

The name most recently used to open the data file is the name by which
it is saved when it is transferred to the computer.

If the file is opened for REFERENCE, the file is assumed to be
properly formatted as a cross-reference file. (A properly formatted cross-
reference file is one that was created or opened with Application Builder
or converted with Vxcrf.exe or Vxcrfw.exe. See the DuraTrax,
LaserLite, & LaserLite Pro Developer’s Reference Manual for
information on Vxcrf.exe and Vxcrfw.exe.) LOOKUP can be called for
files opened for REFERENCE.

The file number must be between 0 and 31. File numbers greater than 31
result in an error.

It is recommended that the ERR function be called after the OPEN
statement or other file handling routines.

142 Chapter 4 Statement & Function Reference

See also CLOSE, EOF, LOF, LOFH, LOOKUP, and SEEK.

The OPEN statement is used to open a file in RAM. See the
CARDCMD statement to open files on the LaserLite Mx memory card.

• Example

See the LOF function examples 1 and 2.

OPTION Function

• Action

Returns the status of an environment option . (Videx BASIC)

• Syntax

result% = OPTION (optionnumber%)

• Parameters

Argument Description
optionnumber% The option number.

• Remarks

Returns the value of options less than 255. The value of options less than
128 are returned as true (-1) or false (0).

See also OPTION statement.

• Returns

The status of the environment option.

Chapter 4 Statement & Function Reference 143

OPTION Statement

• Action

Sets the value of an environment option.

• Syntax

OPTION (optionnumber%) = integerexpression%

• Parameters

Argument Description
optionnumber% The option number.
integerexpression% The value to which the option should be set. For

options less than 128, this is any non-zero value to
enable the option and zero to disable the option.
Options greater than 128 can be set to a value within
the specified range.

• Remarks

Following is a list of available options:

Option Number Range Default

Read Code 3 of 9 8 True 1-False 0 1 (True)
Enables reading Code 3 of 9 symbology bar codes. When Code 3 of 9 is
disabled, the data collector cannot decode Code 3 of 9 symbology bar codes.

Read Interleaved 2 of 5 9 True 1-False 0 1 (True)
Enables reading Interleaved 2 of 5 (I 2of5) symbology bar codes. When
Interleaved 2 of 5 is disabled, data collector cannot decode I 2of5 bar codes.

Read UPC/EAN 10 True 1-False 0 1 (True)
Enables reading UPC and EAN symbology bar codes. When UPC/EAN is
disabled, the data collector cannot decode UPC or EAN symbology bar codes.

Read Codabar 11 True 1-False 0 1 (True)
Enables reading Codabar symbology bar codes. When Codabar is disabled, the
data collector cannot decode Codabar symbology bar codes.

144 Chapter 4 Statement & Function Reference

Option Number Range Default

Read Code 128 12 True 1-False 0 1 (True)
Enables reading Code 128 symbology bar codes. When Code 128 is disabled,
the data collector cannot decode Code 128 symbology bar codes (including
UCC128).

Require valid checksum for Code 3 of 9
 16 True 1-False 0 0 (False)
When this option is enabled, the data collector can only decode a Code 3 of 9
bar code if it has a valid modulo 43 symbol check character. The check character
is determined as follows:

1. Assign a numerical value to each data character in the symbol as
shown in the table below.

2. Sum the numerical values for all of the data characters and divide
the sum by 43.

3. The remainder obtained in step 2 is the value of the check character
shown in the table.

Character Values for Code 3 of 9 Modulo 43 Check Character Calculation

Character Value Character Value Character Value
0 0 F 15 U 30
1 1 G 16 V 31
2 2 H 17 W 32
3 3 I 18 X 33
4 4 J 19 Y 34
5 5 K 20 Z 35
6 6 L 21 - 36
7 7 M 22 . 37
8 8 N 23 SPACE 38
9 9 O 24 $ 39
A 10 P 25 / 40
B 11 Q 26 + 41
C 12 R 27 % 42
D 13 S 28
E 14 T 29

Example:
For the data message: CODE 39
C=12, O=24, D=13, E=14, SPACE=38, 3=3, 9=9
12 + 24 + 13 + 14 + 38 + 3 + 9 = 113
113/43 = 2 with a remainder of 27
27 = R
Resultant data with check character: CODE 39R

Chapter 4 Statement & Function Reference 145

Option Number Range Default

Transmit Code 3 of 9 checksum 17 True 1-False 0 0 (False)
If this option is enabled and option 16 is enabled, the data collector places both
the bar code and the check character in the scan buffer. If this option is disabled
but option 16 is enabled, the data collector strips the check character from the
bar code data. For example:

• = In the previous example, the bar code data with checksum is
CODE 39R.

• = The data collector returns CODE 39R with option 17 enabled.
• = The data collector returns CODE 39 with option 17 disabled.

Require valid checksum for Code I 2 of 5
 20 True 1-False 0 0 (False)
When this option is enabled, the data collector only decodes an Interleaved 2 of
5 bar code if it has a valid weighted modulo 10 symbol check character. The
weighted check character is determined as follows:

1. Starting at either end of the string of data characters, multiply all of the
odd position characters by 3.

2. Sum the products obtained in step 1, along with the remaining even
position data characters, and divide the sum by 10.

3. If the remainder obtained in step 2 is 0, the value of the check digit is 0.
Otherwise, subtract the remainder from 10. The result of this
subtraction is the check digit.

4. Append the check digit to the end of the data.

Example:

Data Digits: 4 3 8 2 7
Weights: 3 1 3 1 3
Weighted Sum = (3 x 4) + (1 x 3) + (3 x 8) + (1 x 2) + (3 x 7) = 62
62/10 = 6 with a remainder of 2
10 - 2 = 8
Therefore, the check digit is 8.
Data with check digit is: 4 3 8 2 7 8

146 Chapter 4 Statement & Function Reference

Option Number Range Default

Transmit Code I 2 of 5 checksum 21 True 1-False 0 0 (False)
If this option is enabled and option 20 is enabled, the data collector places both
the bar code and the check character in the scan buffer. If it is disabled, but
option 20 is enabled, the data collector strips the check character from the bar
code data.

For example:
• = In the previous example, the bar code data with checksum is 438278.
• = The data collector returns 438278 with option 21 enabled.
• = The data collector returns 43827 with option 21 disabled.

Expand UPC-E to UPC-A form 24 True 1-False 0 0 (False)
UPC-E is a shortened version of the UPC-A symbology where redundant zeros
are removed according to a specific formula. If this option is enabled, the data
collector expands the UPC-E bar code to its equivalent UPC-A form.

1236430 2
UPC-E bar code

 12300 000640 2
UPC-A bar code showing same data

Transmit check character for UPC 25 True 1-False 0 1 (True)
The rightmost character in each of the bar code symbols above is the check
character for the bar code. Option 25 toggles whether the check character is to be
included with the bar code data when it is returned by INPUTEVT.

Chapter 4 Statement & Function Reference 147

Option Number Range Default

Transmit country code character for UPC-A
 26 True 1-False 0 0 (False)
UPC symbols are a subset of the more comprehensive EAN system. EAN-13
symbols encode the first digit in the parity pattern of the characters on the left
side of the symbol. For UPC codes all these characters have odd parity, which
gives a zero in the EAN scheme. A UPC-A symbol is therefore equivalent to an
EAN-13 symbol with a first digit of zero. This digit is called the country code,
since its function (sometimes along with the second character) in the EAN
system is to specify the country of origin.

Country Code transmission disabled:

UPC-A 012300000642

 0 = number system code
 1230000064 = data
 2 = check character

In the bar code above, toggling the country code character would have the
following results:

Country Code transmission enabled:

UPC-A 0012300000642

 0 = country code
 0 = number system code
 1230000064 = data
 2 = check character

The Uniform Code Council recommends disabling transmission of the country
code character. To transmit the country code for a UPC-E bar code, it must first
be expanded to the UPC-A form by enabling option 24.

Transmit number system character for UPC
 27 True 1-False 0 1 (True)
The first digit of a 12-character UPC-A symbol represents the number system of
the code; it is the digit usually printed to the left of the code. If this option is
enabled, the data collector includes the number system character with the bar
code data.

148 Chapter 4 Statement & Function Reference

Option Number Range Default

Report UPC-A source as EAN 28 True 1-False 0 0 (False)
A UPC-A symbol is actually an EAN-13 symbol with a country code of zero. If
this option is enabled, the data collector reports the symbology code from a UPC
bar code as 16. If this option is disabled, it reports the origin code as 2.

Transmit check character for EAN
 30 True 1-False 0 1 (True)
The rightmost character in each of the EAN bar code symbols below is the check
character for the bar code. Option 30 toggles whether the check character is to be
included with the bar code data.

0034 0007

EAN- 8 bar code
Option 30 disabled - 0034000
Option 30 enabled - 00340007

800454 8612327

EAN-13 bar code
Option 30 disabled - 780045486123
Option 30 enabled - 7800454861232

Chapter 4 Statement & Function Reference 149

Option Number Range Default

Allow supplement with UPC or EAN
 31 True 1-False 0 1 (True)
The data collector decodes both 2-digit and 5-digit add-ons to UPC or EAN bar
codes. Enabling this option, returns the supplement data with the scan data, if a
supplement is detected. The supplement is separated from the main code by a
space character. Options 32 and 33 must be disabled for this option to be
effective.

12000 004940 0

52

UPC-A bar code with 2 character extension

780123 4567869

50995

EAN-13 bar code with 5 character extension

Require supplement for UPC or EAN
 32 True 1-False 0 0 (False)
If this option is enabled and option 33 is disabled, the data collector cannot
decode a UPC or EAN bar code without a supplement. Option 32, when enabled,
takes precedence over option 31.

Ignore any UPC or EAN supplement
 33 True 1-False 0 0 (False)
If this option is enabled, the data collector decodes the UPC or EAN symbol
regardless of whether there is a supplement. Option 33, when enabled, takes
precedence over options 31 and 32.

150 Chapter 4 Statement & Function Reference

UPC/EAN Supplement Options

The following table details the interaction of the options that control the
handling of supplements appended to UPC or EAN bar codes. For each
option, the table entries represent the following states:

 T - Option is enabled or true.
 F - Option is disabled or false.
 X - The state of the option does not affect the result.

The entries for each supplement state describe the data returned when
such a bar code is scanned and the options are in the configuration
described in the same column.

Allow
supplement
(Option 31)

X

X

T

F

Require
supplement
(Option 32)

X

T

F

F

Ignore
supplement
(Option 33)

T

F

F

F

Bar code
with good
supplement

Returns
Base only

Returns Base +
Supplement

Returns Base +
Supplement

Returns
Error

Bar code
with no
supplement

Returns
Base only

Returns Error Returns Base
only

Returns
Base only

Bar code
with bad
supplement†

Returns
Base only

Returns Error Returns Error Returns
Error

† The system can see that a supplement is present but it does not decode
correctly. It is possible to scan a bar code symbol in such a way that the
system cannot detect the presence of the supplement.

Chapter 4 Statement & Function Reference 151

Option Number Range Default

Transmit Codabar start and stop characters
 36 True 1-False 0 1 (True)
The Codabar symbology uses A, B, C, or D as a start or stop character. Enabling
this option includes the start and stop characters in the scan data.

Enable inkspread correction 37 True 1-False 0 1 (True)
When bar codes are printed using toner or ink based printers, the toner or ink
may “spread” beyond its intended bounds. This may cause the nominal width of
the bars to exceed the nominal width of the spaces in the bar code. The data
collector’s decoding algorithm includes a correction for light to moderate
instances of inkspread. This can help increase decode reliability and overall
readability of certain bar codes. Enabling this option enables the inkspread
correction routine.

Minimum quiet zone (ratio to smallest bar)
 131 6–64 6
The quiet zone of a bar code is the clear space that precedes the start character of
a bar code symbol and follows the stop character. The width of the quiet zone is
expressed as a multiplier of the width of the narrow bars and narrow spaces (X-
dimension). The minimum recommended quiet zone for a Code 3 of 9
symbology bar code is 10 X-dimension, that is 10 times the width of the narrow
bars and narrow spaces of the bar code symbol. The space between the main
symbol and the supplement of a UPC or EAN bar code must also be a quiet zone
and its minimum width is 7 X-dimension. For the DuraTrax, LaserLite, LaserLite
Pro, or LaserLite Mx, the minimum quiet zone for all instances is 6 X-dimension
or 6 times the width of the narrow bars. This option allows setting the minimum
quiet zone ratio in the range of 6 to 64. It can be set to 10 or 15, for example, to
decode Code 3 of 9 bar codes that have large spaces between the characters, so
that the spaces are not interpreted as the end of the bar code.

152 Chapter 4 Statement & Function Reference

The following options set the minimum and maximum length of bar code
for each symbology. The maximum size of a data element is limited to
64 characters by internal registers. It may also be further limited by the
storage space allocated in the DESCRIBE.SRC template for any
variables that must contain the data. (Note: See the DuraTrax, LaserLite,
& LaserLite Pro Developer’s Reference Manual for information on the
DESCRIBE.SRC template used by the Application Builder software.)

Option Number Range Default

Shortest Code 39 bar code accepted 136 1–64 1

Shortest I 2 of 5 bar code accepted 137 1–64 4

Shortest Codabar bar code accepted 139 1–64 1

Shortest Code 128 bar code accepted 140 1–64 1

Longest Code 39 bar code accepted 144 1–64 64

Longest I 2 of 5 bar code accepted 145 1–64 64

Longest Codabar bar code accepted 147 1–64 64

Longest Code 128 bar code accepted 148 1–64 64

Following are some additional options:

Option Description
256 Screen on or off (write only).
258 LED 2 (Valid Scan LED) on or off (write only).
259 Key mode on or off (write only).
512...575 Sets the programmable display character lines.

The programmable display characters options (512–575) allow you to
design up to 8 characters (ASCII 0 through 7) for use on the data
collector’s display. The character size is 5 x 8 pixels.

Chapter 4 Statement & Function Reference 153

Use options 512–519 to create character 0.
Use options 520–527 to create character 1.
Use options 528–535 to create character 2.
Use options 536–543 to create character 3.
Use options 544–551 to create character 4.
Use options 552–559 to create character 5.
Use options 560–567 to create character 6.
Use options 568–575 to create character 7.
(Note: Application Builder uses character 7.)

In this example, we will create a character for character 1, using options
520–527. The first step is to design your character on a grid similar to
the one shown in the following diagram. Once you design the character,
you then define each option line used.

To define each option line, add the values (listed at the top) for the black
pixels. For example, line 520 in the diagram below, has a black pixel at
the 4 value; this line is defined as: Option (520) = 4. Line 521 has
a black pixel at the 8 and the 2 values. Add the values together and this
line is defined as: Option (521) = 10.

The character lines in this diagram would be defined as:

 16 8 4 2 1

520
521
522

523
524
525
526

527

Option (520) = 4
Option (521) = 10
Option (522) = 10
Option (523) = 21
Option (524) = 17
Option (525) = 10
Option (526) = 10
Option (527) = 4

The programmable display character options do not take effect until the
screen is turned off and back on, i.e. Option (256) = 0

Option (256) = 1

154 Chapter 4 Statement & Function Reference

• Example

REM OPTION Statement
'Repeats the good read sound and flashes the LED 6 times.
PRINT "GOOD READ"
PRINT "SEQUENCE";
FOR i = 1 TO 6

OPTION(258) = 1 'turn on the LED
SOUND 1446, 250 'good beep
OPTION(258) = 0 'turn off the LED
GOSUB killTime

NEXT i
END

killTime: 'just a short delay for demo purposes only
FOR r = 1 TO 200
NEXT r
RETURN

Chapter 4 Statement & Function Reference 155

PATTERN Function

• Action

Determines whether the second string matches the TimeWand II-style
pattern in the first string.

• Syntax

matchPat% = PATTERN (stringexpression1$, stringexpression2$)

• Parameters

Argument Description
stringexpression1$ String to match (TimeWand II-style pattern).
stringexpression2$ String being compared.

• Remarks

When specifying a TimeWand II-style pattern, five characters are used
as wild cards to create the pattern. These characters are:

A number [0-9] must be in this position.
@ A letter [a..z, A..Z] must be in this position.
& Any character can be in this position.
= The rest of the string can be any characters or no character.
> The rest of the string must be numbers [0..9] or no character.

These are the actual characters your bar codes may contain:

 A..Z 0..9 space + - / % . $

156 Chapter 4 Statement & Function Reference

Following are examples of TimeWand II-style patterns:

Pattern Acceptable Entries
E= Any entry that starts with the letter E.
E> Any entry that starts with the letter E and is followed only by

numeric digits.
E0003 Entry must match E0003 exactly.
#> At least one digit followed by any number of digits.
AAA= Any entry that begins with AAA.
AA#A A four character long entry, with A in the first, second, and fourth

positions; and a number in the third position.
AA@A Same as previous entry, but with a letter in the third position.
AA&A Same as previous entry, but with any character in the third position.

• Returns

If stringexpression2$ matches the TimeWand II-style pattern in
stringexpression1$, PATTERN returns a -1; otherwise, it returns 0.

• Example

REM PATTERN() Function 'checks two strings against pattern
data1$ = "555-AB-1234" 'great tool for restricting input
data2$ = "555-55-1234"
matchPat$ = "###-##-####"
PRINT matchPat$
PRINT data1$;
c% = PATTERN(matchPat$,data1$)
GOSUB show_result
PRINT matchPat$
PRINT data2$;
c% = PATTERN(matchPat$,data2$)
GOSUB show_result
END

show_result:
SLEEP 2 'pause display for 2 seconds or until keypress
CLS
PRINT "PATTERN IS.."
IF c% = 0 THEN

PRINT "DIFFERENT";
ELSE

PRINT "THE SAME";
ENDIF
SLEEP 0 'pause display until keypress
CLS
RETURN

Chapter 4 Statement & Function Reference 157

PRINT Statement

• Action

Outputs data to the screen or to a file.

• Syntax

The term expression includes both expression% and expression$.

(PRINT | ?) [# filenumber%,] [expression] {(, | ;) [expression]}

• Parameters

Arguments Description
filenumber% The file number used in the OPEN statement.
expression The string or integer expression to be printed.

• Remarks

The PRINT statement normally prints a carriage-return/line-feed pair at
the end of the line. You can suppress this behavior by ending the PRINT
statement with a comma or semicolon. A comma moves the current pen
location to the next tab stop. A semicolon leaves the pen at its current
location. An error occurs if the statement contains two expressions in a
row without a separator (however, it is acceptable to have two separators
in a row).

If a file number is specified, the data is printed to the previously
OPENed data file rather than to the screen. In that case, the error
condition may be set. You should always check the error condition when
writing to the data file to minimize data loss. The error condition should
also be checked after any PRINT statement that uses a concatenation
symbol (+) to combine strings.

See also LOCATE and OPEN.

158 Chapter 4 Statement & Function Reference

The PRINT statement is used to print to a file in RAM. See the
CARDCMD statement to write to files on the LaserLite Mx memory
card.

The data collector’s LCD can display the following characters:

!!!! " #### $$$$ %%%% &&&& ' (((()))) *

+ , - . / @ : ; < >

= ? { } | 0 1 2 3 4

5 6 7 8 9 A a ä B b

C c D d E e F f G g

H h I I J j K k L l

M m N n ñ O o ö P p

Q q R r S s T t U u

ü V v W w X x Y y Z

z ΩΩΩΩ µµµµ ∑∑∑∑ ππππ ¢¢¢¢ °°°° ££££ ���� ����

• Example

REM PRINT Statement
'* Prints to a file and to the screen.
myFile$ = "data.txt"
PRINT "Now printing..."
PRINT "Please wait";
OPEN myFile$ FOR APPEND AS #0 'this is output file
FOR i% = 1 TO 1000 'send the data$ contents 1000 times

LOCATE 1,0
data$ = "Line number " + ;i
PRINT data$; 'data$ goes to second line of display
PRINT #0, data$ 'data$ is appended to a file

NEXT i%
CLOSE #0
CLS
PRINT "Done"
SLEEP 3 'pause display for 3 seconds

Chapter 4 Statement & Function Reference 159

REM Statement

• Action

Allows explanatory remarks to be inserted in a program.

• Syntax

(REM | ') { anything }

• Parameters

Argument Description
anything This can be any combination of letters, numbers, symbols, etc.

• Remarks

The compiler ignores everything from REM to the end of the line. REM
can appear at the end of any line, including a line that has other BASIC
statements. You may branch from a GOTO or GOSUB statement to a
REM statement. Execution continues with the first executable statement
after the REM statement.

• Example

'REM Statement note that you may use REM or ' to remark a line
DIM myArray(23)
FOR I = 0 TO 22 : myArray(I) = 0 : NEXT I REM Initialize array
FOR I = 0 TO 22 : myArray(I) = 0 : NEXT I 'Initialize array

160 Chapter 4 Statement & Function Reference

RIGHT$ Function

• Action

Returns a string that is composed of the rightmost characters in the string
argument.

• Syntax

data$ = RIGHT$ (stringexpression$, n%)

• Parameters

Argument Description
stringexpression$ Any string variable, string constant, or string expression.
n% A numeric expression (range 0–32767) indicating how

many characters are to be returned.

• Remarks

See also LEFT$, LEN, and MID$.

• Returns

If n% is greater than the number of characters in stringexpression$, the
entire string is returned. To find the number of characters in
stringexpression%, use the LEN function.

If the integer argument is zero, a null string (length zero) is returned.

• Example

See the LEFT$ example.

Chapter 4 Statement & Function Reference 161

RTRIM$ Function

• Action

Returns a copy of a string with trailing (right-hand) spaces removed.

• Syntax

data$ = RTRIM$ (stringexpression$)

• Parameters

Argument Description
stringexpression$ Any string expression.

• Remarks

See also LTRIM$.

• Returns

Copy of string with no trailing spaces.

• Example

See the LTRIM$ example.

162 Chapter 4 Statement & Function Reference

SEEK Function

• Action

Returns the current file position.

• Syntax

cfp% = SEEK (filenumber%)

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.

• Remarks

See also EOF, OPEN, SEEK statement, and SEEKH.

The SEEK function is used to work with a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

• Returns

The byte position in the file where the next operation is to take place.
The first byte in a file is 0.

For sequential (data) files, returns the current file position (from the
beginning of the file) MOD 32768.

Chapter 4 Statement & Function Reference 163

• Example

REM SEEK() Function
DIM data$ * 10
myFile$ = "data.txt"
OPEN myFile$ FOR APPEND AS #0 'this is output file
FOR i% = 1 TO 30 'write 30 lines to the file

PRINT #0, "LINE "; STR$(i%); " VIDEX LASERLITE PRO"
NEXT i%
CLOSE #0
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
CLS
dataLine$ = ""
OPEN myFile$ FOR APPEND AS #0 'this is input file
SEEK #0,0 'go to the beginning of file
DO WHILE NOT EOF(0) 'when EOF is reached, loop stops

data$ = INPUT$(50,0) 'input 50 bytes and stuff into
'the 10 byte data$ variable

CLS
PRINT data$ 'print the data$ variable
cfp% = SEEK(0) 'return current file position
PRINT "Position = ";cfp%; 'print it
SLEEP 1 'pause display for 1 second or keypress

LOOP
CLS
PRINT "END OF FILE"
SLEEP 2 'pause display up to 2 seconds

164 Chapter 4 Statement & Function Reference

SEEK Statement

• Action

Sets the position in a sequential (data) file for the next read or write.

• Syntax

SEEK [#] filenumber%, position% [, (S | E | P)]

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.
position% An offset from the start, end, or current file position.
S | E | P S = from start; E = from end; P = from current position.

• Remarks

Set the position in a sequential (data) file for the next read or write. The
file position can be specified as an offset from the start of the file, the
end of the file, or the current file position. Note that the file position can
be set to an arbitrarily large number by calling SEEK repeatedly with an
offset from the current position. Also note that SEEK #0, 0 sets the file
position at the first byte in the file, as opposed to other implementations
of BASIC, where SEEK #0, 1 does the same thing.

See also EOF, OPEN, SEEK, and SEEKH.

The SEEK statement is used to work with a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

• Example

SEEK #0, 0 'set file position at first byte in file
SEEK #0, 0, S 'set file position at first byte in file
SEEK #0, 0, E 'set file position at first byte after file

'(prepare to append)
SEEK #0, 10, P 'advance the file position 10 bytes
SEEK #0, -10, P 'move the file position back 10 bytes

See the EOF and SEEK function examples.

Chapter 4 Statement & Function Reference 165

SEEKH Function

• Action

Returns the high-order word of the current file position.

• Syntax

cHp% = SEEKH (filenumber%)

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.

• Remarks

Since an integer can only represent numbers in the range -32768 to
32767, and files can be much larger than that, the size of a file must be
represented with two integers.

The true file position is:

SEEKH() * 32768 + SEEK()

See also SEEK.

The SEEKH function is used to work with a file in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

• Returns

For sequential (data) files, returns the current file position (from the
beginning of the file) / 32768.

166 Chapter 4 Statement & Function Reference

• Example

REM SEEKH() Function
'* Also uses the SEEK() function.

DIM data$ * 10
myFile$ = "data.txt"
PRINT "Please wait..."
PRINT "making BIG file";
OPEN myFile$ FOR APPEND AS #0 'this is an output file
FOR i% = 1 TO 1500 'write 1500 x 50 (75K) to the file
PRINT #0,"12345678901234567890123456789012345678901234567890"
NEXT i%
CLOSE #0
CLS
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
CLS
dataLine$ = ""
OPEN myFile$ FOR APPEND AS #0 'this is an input file
SEEK #0,0 'go to beginning of file
DO WHILE NOT EOF(0) 'when EOF is reached, loop stops

data$ = INPUT$(10000,0) 'input 50 bytes and stuff into the
'10 byte data$ variable

CLS
PRINT "Position is..."
cHp% = SEEKH(0) 'return current file position
cfp% = SEEK(0)
msg$ = ""
IF cHp% > 0 THEN

IF cHp% = 1 THEN
msg$ = "32,767 + "

ELSE
msg$ = "32,767*" + STR$(cHp%) + " + "

ENDIF
ENDIF
PRINT msg$;cfp%; 'print it
SLEEP 0 'pause display for 1 second or keypress

LOOP
CLS
PRINT "END OF FILE"
SLEEP 2 'pause display for up to 2 seconds

Chapter 4 Statement & Function Reference 167

SGN Function

• Action

Indicates the sign of a numeric expression.

• Syntax

theSign% = SGN (intexpression%)

• Parameters

Argument Description
intexpression% Any integer expression.

• Remarks

None

• Returns

1 if integer is positive; 0 if integer is 0; -1 if integer is negative.

168 Chapter 4 Statement & Function Reference

• Example

REM SGN() Function

DIM quantity(7) 'dim an array of 8 values

quantity(0) = 1
quantity(1) = -2
quantity(2) = 3
quantity(3) = -4
quantity(4) = 5
quantity(5) = 6
quantity(6) = -7
quantity(7) = 8

FOR i = 0 TO 7
CLS
IF SGN(quantity(i)) = 1 THEN

theSign$ = "positive"
ELSE

theSign$ = "negative"
ENDIF
PRINT "The value..."
PRINT quantity(i);" is "; theSign$;
SLEEP 2

NEXT i

Chapter 4 Statement & Function Reference 169

SLEEP Statement

• Action

Pauses program execution for a specified number of seconds. (Videx
BASIC)

• Syntax 1 (for DuraTrax, LaserLite, and LaserLite Pro)

SLEEP seconds%

• Parameters 1

Argument Description
seconds% Number of seconds the data collector stays asleep once it

enters sleep mode.

• Remarks 1

If the number of seconds is 0, then the program execution is paused
indefinitely. Any event will cause program execution to resume. A
subsequent INPUTEVT statement does not report key events, but other
events are reported.

The data collector is in a low-power state while it’s sleeping. The IrDA
chip is off, so serial communications are not received. The screen
remains active for the duration of the SLEEP command, but it is
possible to turn the screen off before going to sleep to enter the lowest
possible power (see the OPTION statement).

When debugging, use the SLEEP statement to pause program execution
while displaying intermediate results on the screen.

• Example 1

SLEEP 0 'waits for a keypress
SLEEP 3 'waits for 3 seconds or a keypress

See the PATTERN example.

170 Chapter 4 Statement & Function Reference

• Syntax 2 (for LaserLite Mx)

SLEEP param%

• Parameters 2

Argument Description
param% Length of time the LaserLite Mx’s LCD is controlled by the

SLEEP statement.

• Remarks 2

For the LaserLite Mx, the value of param% specifies the LCD state
when the system is asleep as follows:

param% = 0 LCD is off; system sleeps indefinitely.

param% < 0 LCD is off; system sleeps for the number of seconds
equal to the absolute value of param%.

0 < param% < 600 LCD is on; system sleeps for param% seconds.

param% ≥ 600 LCD is on; system idles (no sleep-wake cycle) for
param% milliseconds (ms).

In all cases, the system resumes operation if a key is pressed.

• Example 2

SLEEP 0 'LCD is off; system waits for a keypress

SLEEP -10 'LCD is off; system sleeps for 10 seconds or
'until a keypress

SLEEP 10 'LCD is on; system sleeps for 10 seconds or
'until a keypress

SLEEP 850 'LCD is on; system idles for 850 ms or until a
'keypress

Chapter 4 Statement & Function Reference 171

SOUND Statement

• Action

Generates a sound through the speaker.

• Syntax

SOUND frequency%, duration%

• Parameters

Argument Description
frequency% The desired frequency in hertz (Hz) (cycles/second). The

frequency must be a numeric expression returning an integer
in the range 50–8000. See the table below for the frequencies
of different musical notes.

duration% The duration of the tone. The duration must be a numeric
expression returning an integer in the range of 1–2000
(2000 = 2 seconds).

 Musical Note Frequencies

G# 52 E 165 C 523 G# 1661
A 55 F 175 c# 554 A 1760
A# 58 F# 185 D 587 A# 1885
B 62 G 196 D# 622 B 1976
C 65 G# 208 E 659 C 2083
c# 69 A 220 F 698 C# 2217
D 73 A# 233 F# 740 D 2349
D# 76 B 247 G 784 D# 2489
E 82 C 262 G# 831 E 2637
F 87 c# 277 A 880 F 2794
F# 93 D 294 A# 932 F# 2880
G 98 D# 311 B 986 G 3136
G# 104 E 330 C 1047 G# 3322
A 110 F 349 c# 1109 A 3620
A# 117 F# 370 D 1175 A# 3729
B 123 G 392 D# 1245 B 3951
C 131 G# 415 E 1329 C 4186
c# 139 A 440 F 1387
D 147 A# 466 F# 1480
D# 156 B 494 G 1566

172 Chapter 4 Statement & Function Reference

• Remarks

Do not use values outside the given ranges.

See also BEEP.

• Example

REM SOUND Statement

SOUND 1415,100
SOUND 1440,50
SOUND 1494,50
SOUND 1523,50
SOUND 1587,50
SOUND 1698,50
SOUND 1784,50
SOUND 1880,50
SOUND 2047,50
SOUND 2329,50
SOUND 2566,50

See also the FOR...NEXT example.

Chapter 4 Statement & Function Reference 173

STR$ Function

• Action

Returns a string representation of a number.

• Syntax

strEquiv$ = STR$ (numeric expression%)

• Parameters

Argument Description
numeric expression% Any numeric expression.

• Remarks

The VAL function complements STR$. See also VAL example.

• Returns

A string representation of numeric expression%.

• Example

REM STR$() Function

LET word$ = "Videx LaserLite"
PRINT word$
lenWord% = LEN(word$)
length$ = STR$(lenWord%)
PRINT "is "; length$; " chars.";
SLEEP 0 'pause display until keypress

Output:

Videx LaserLite
is 15 chars.

174 Chapter 4 Statement & Function Reference

SWAP Statement

• Action

Exchanges the value of two variables.

• Syntax

SWAP variable1$, variable2$

or

SWAP variable1%, variable2%

• Parameters

Argument Description
variable1, variable2 Can be any variable, but both variables must be of

the same type.

• Remarks

Either integer or string variables can be swapped. However, the two
variables must be exactly the same type or an error message appears. For
example, trying to swap an integer variable with a string variable will
produce an error message.

• Example

REM SWAP Statement
sndA% = 4800
sndB% = 3300
FOR i% = 1 TO 10

SOUND sndA%, 500
SWAP sndA%, sndB%

NEXT i%

Chapter 4 Statement & Function Reference 175

TIME$ Function

• Action

Returns the current time from the operating system.

• Syntax

nowTime$ = TIME$ [()]

• Parameters

None

• Remarks

None

• Returns

The TIME$ function returns an eight-character string in the pattern
hh:mm:ss, where hh is the hour (00–23), mm is the minutes (00–59), and
ss is the seconds (00–59). A 24-hour clock is used; therefore, 8:00 PM is
shown as 20:00:00.

176 Chapter 4 Statement & Function Reference

• Example 1

REM TIME$() Function example 1 example 1
'Returns both date and time (in two formats).

Dim nowDate$,nowTime$,convDate$,convTime$
CLS
nowDate$ = DATE$()
nowTime$ = TIME$()
PRINT "Date is :"
PRINT nowDate$; 'standard date
SLEEP 0
GOSUB make_date
CLS
PRINT "Date is :"
PRINT convDate$; 'TimeWand I style date
SLEEP 0
CLS
PRINT "Time is :"
PRINT nowTime$; 'standard time
SLEEP 0
GOSUB make_time:
CLS
PRINT "Time is :"
PRINT convTime$; 'TimeWand I style time
SLEEP 0
END

' make_date
' description: Convert a DuraTrax OS date "MM-DD-YYYY"
' into a TimeWand I style date "YYYYMMDD"

make_date:
nowDate$ = DATE$
convDate$ = RIGHT$(nowDate$, 4)
convDate$ = convDate$ + LEFT$(nowDate$, 2)
convDate$ = convDate$ + MID$(nowDate$, 4, 2)

RETURN

' make_time
' description: Convert a DuraTrax OS time "hh:mm:ss" into
' a TimeWand I style time "hhmmss"

make_time:
nowTime$ = TIME$
convTime$ = convTime$ + LEFT$(nowTime$, 2)
convTime$ = convTime$ + MID$(nowTime$, 4, 2)
convTime$ = convTime$ + RIGHT$(nowTime$, 2)

RETURN

Chapter 4 Statement & Function Reference 177

• Example 2

REM TIME$() Function example 2
CONST NL$ = CHR$(13) + CHR$(10)
T$ = TIME$
Hr = VAL(T$)
IF Hr < 12 THEN

AMPM$ = " AM"
ELSE

AMPM$ = " PM"
ENDIF
IF Hr > 12 THEN Hr = Hr - 12
PRINT "The time is"; NL$; STR$(Hr); RIGHT$ (T$,6); AMPM$;
SLEEP 4

178 Chapter 4 Statement & Function Reference

TOKEN$ Function

• Action

Returns tokens from the given data file. This function allows you to
search and scroll through the data file.

• Syntax

field$ = TOKEN$ (filenumber%, stringargument$, direction%)

• Parameters

Argument Description
filenumber% The file number used in the OPEN statement.
stringargument$ Any string expression.
direction% Direction of search. If zero, searches forward; if not

zero, searches backward.

• Remarks

Tokens are described as any sequence of characters that do not include
any of the characters in the stringargument$.

See also INPUT$, OPEN, and SEEK.

The TOKEN$ function is used to work with files in RAM. See the
CARDCMD statement to work with files on the LaserLite Mx memory
card.

• Returns

Returns tokens from the data file, starting at the current file position. If
the last argument is non-zero, it searches backward; otherwise, it
searches forward.

When there are no more tokens, " " is returned. Note that the current file
position is changed after the token is read, preparing to read another

Chapter 4 Statement & Function Reference 179

token in the same direction. The file position will be at the first non-
token character that is encountered (or at the end or beginning of the
file). If you want to append data to the file after calling TOKEN$, be
sure to call SEEK to place the file position at the end of the file.

If TOKEN$() is used in an expression, the token is read into a
temporary variable with a maximum size of 128. (See the discussion of
INPUT$ on page 107.)

The TOKEN$ function is useful when searching through the data file
for entries. By setting stringargument$ to the field delimiter, TOKEN$
returns data with the delimiters stripped out.

• Example

REM TOKEN$() Function
'Creates a tab delimited file in memory and parses it out.
myFile$ = "data.txt"
theToken1$ = CHR$(9)
theToken2$ = CHR$(13)
OPEN myFile$ FOR APPEND AS #0 'this is an output file
FOR i% = 1 TO 10 'write 10 tab delimited lines to file

PRINT #0, "LINE "; STR$(i%) , " VIDEX DURATRAX"; STR$(i%)
NEXT i%
CLOSE #0
PRINT "Saved data to:"
PRINT myFile$;
SLEEP 0
CLS
OPEN myFile$ FOR APPEND AS #0 'this is an input file
SEEK #0,0
DO

field1$ = TOKEN$ (0,theToken1$,0)
'first field is delimited by a tab
field2$ = TOKEN$ (0,theToken2$,0)
'second field is terminated by a carriage return
field2$ = LTRIM$ (field2$) 'trim the tab out
CLS
PRINT field1$
PRINT field2$;
SLEEP 4

LOOP UNTIL field2$ = ""

180 Chapter 4 Statement & Function Reference

TOUCH Statement (for DuraTrax, LaserLite Pro, and LaserLite Mx
only)

• Action

Reads or writes data to or from Touch Memory buttons capable of
storing data. Note: Touch Memory buttons are also known as iButtons.
(Videx BASIC) (Note: This statement is not supported by the Macintosh
version of the Videx BASIC compiler.)

• Syntax

TOUCH mode%, button_id$, start_addr%, BYTES_VAR%, STATUS_VAR%, DATA$

• Parameters

Argument Description
mode% Specifies the operation to be performed. See Remarks.
button_id$ String containing the ID of the button to be accessed. The

format is: ff:xxxxxxxxxxxx; where f is a hexadecimal
digit of the 6-byte identification number with the more
significant bytes to the left.

start_addr% Touch Memory button address to start reading or writing.
BYTES_VAR% Variable that returns the actual number of bytes processed

and, for some modes, to specify the number of bytes to
process. Do not use a constant or array element.

STATUS_VAR% Variable that returns error codes, or to set or return the
continuation byte for page-oriented (DDS) operations.

DATA$ Variable that contains information to write, or that will
receive information that is read. Must be a variable for
read operations.

• Remarks

The TOUCH statement is used to access the data area of certain Touch
Memory buttons. Use the INPUTEVT function to simply read the ID on
any Touch Memory button.

Chapter 4 Statement & Function Reference 181

The mode% parameter is generally bit-oriented, with each bit
representing a specific option. The following table defines the normal bit
associations. Compatible options can usually be combined by adding the
values of the various bits that are turned on.

Bit# Effect when = 0 Effect when = 1 Add
0 Read Write 1
1 Direct (no Default Data Structure) Default Data Structure 2
2 Reserved Reserved 4
3 ASCII string Hexadecimal string 8
4 Reserved Reserved 16
5 Reserved Reserved 32
6 Reserved Reserved 64
7 Reserved (also 8–15 reserved) 128

The format for the button ID is “ff:xxxxxxxxxx” where f is a
hexadecimal digit of the Family Code and x is a hexadecimal digit of the
6-byte identification number with the most significant bytes to the left.
The colon (:) is to be included as shown. If this parameter is an empty
string, the ID of the last accessed button is used. This is usually the
button that was read in response to a button event (INPUTEVT). It
might also be a button previously accessed for data reading or writing, if
no other button IDs were read in between.

The start address is the actual memory address for direct operations or
operations using the Default Data Structure (DDS). The DDS is a page-
oriented packet protocol for reading and writing data to Touch Memory
buttons. In the case of a DDS operation, the start address points to the
length byte (or bytes) and is usually the beginning of a page.

The BYTES_VAR% variable needs to be set before calling TOUCH for
direct read operations. DDS reads will determine the number of bytes
from the Default Data Structure and return it in BYTES_VAR%. The
number of characters in a hexadecimal mode data string is twice the
number of bytes. Write operations determine the number of bytes to
write, from the length of the DATA$ string. After the operation,
BYTES_VAR% is set to the actual number of bytes successfully read or
written. In the case of DDS write operations, the byte number includes

182 Chapter 4 Statement & Function Reference

the 4 or 5 overhead bytes. A read operation counts only the number of
data bytes; that is it does not include the overhead bytes.

When the operation is complete, STATUS_VAR% contains a negative
number if an error occurred, otherwise it is usually set to zero. See the
error code table on page 184 for a description of the error codes. A
slightly different rule applies when reading or writing a Default Data
Structure (DDS). When reading a DDS, the low order byte of
STATUS_VAR% returns the (positive) value of the continuation page
byte that immediately precedes the CRC16.

For writing a DDS, the continuation byte of the written page is set to the
value you have stored in STATUS_VAR% before the TOUCH statement
is executed. The number of bytes stored by a DDS write operation is
always four bytes more than the length of the string in DATA$ (1 length
byte, 1 continuation byte, and a 2 CRC bytes; except for a DDS with
over 254 bytes, the length specification uses 2 bytes.) See Touch
Memory information from Dallas Semiconductor for more details.

The DATA$ string contains information written to or read from the
button. The maximum length when using DDS mode is 510 characters in
ASCII mode or 1020 characters in hexadecimal mode. Direct mode is
limited only by the length of the DATA$ string and the practicalities of
the one-wire transfer process with momentary touch; however, using
direct mode to read information from buttons is generally discouraged,
because errors are very likely. If it is necessary to use direct mode, it is
recommended that you use multiple reads with the requirement that they
agree.

The DATA$ parameter must be a variable unless mode% is a constant
and specifies a write operation. If the returned data is longer than the
maximum size of the specified string, it is truncated to the length of the
string. For page-oriented operations, overhead bytes are added where
necessary when writing, or removed and handled separately when
reading. In these cases, DATA$ contains only true data bytes. The DDS
operations pass the continuation byte (the byte immediately preceding
the CRC bytes) separately through STATUS_VAR%.

Chapter 4 Statement & Function Reference 183

One additional use of STATUS_VAR% is to indicate when null
characters are encountered while reading ASCII data. The high byte of
STATUS_VAR% is usually zero, but if nulls are encountered, each one
increments the high byte of STATUS_VAR%. See the following
paragraph for more information.

Since Videx BASIC strings are null-terminated, they cannot contain a
character with an ASCII value of zero. In order to work with binary data
in Touch Memory buttons, the mode specification includes a bit that
specifies that the data strings will represent a series of bytes in
hexadecimal format. In addition, if any null bytes are encountered in a
read operation in ASCII mode, the null is converted to the character with
ASCII value 172 (AC hex) before it is stored in DATA$. This character
is “¼” in the standard PC character set and is “¬” in most Windows
fonts, and is unlikely to occur in most text. As an indication of this
substitution, the high byte of STATUS_VAR% is incremented by 1 for
each such byte read. The total number of data bytes in the DDS is
returned in BYTES_VAR%. Hexadecimal mode must be used to read
such data exactly. STATUS_VAR% also contains the continuation byte,
as usual, if this is a DDS read, so the two bytes must be separated. First,
take the modulo of STATUS_VAR% divided by 256, to get the
continuation byte. (Note: Modulo arithmetic provides the remainder of
an integer division, rather than the quotient. See page 18 for information
on modulo arithmetic.) Subtract the modulo from STATUS_VAR%, and
divide the result by 256 to get the number of nulls.

The table on the following page lists the possible error conditions and
other configurations of the return variables. Error -10 (button not
responding) can be activated by inappropriately by an ASCII mode read
of a button that has only unwritten (FF hex) bytes in the range requested.
This is because this valid non-error situation cannot be distinguished
from the non-response of a button different from the one whose ID is
being given. If this is a possibility in your system, you must either ignore
this error or devise a system solution that insures that all buttons have
some information stored.

See also HEX$ and BIN.

184 Chapter 4 Statement & Function Reference

Error Codes

Mode STATUS_VAR% BYTES_VAR% Condition
All 0 # read or written Success.
DDS* read 0 to 255 (con’t) 0 to 511 Success.
All -1 0 No button or button

lost contact.
All -2 0 ID contains an illegal

(non-hex) character.
All -3 0 Button family does not

support operation.
All -4 0 Address does not exist

for this family code.
All -5 0 Some bytes out of

range for family.
Hex write -6 (# written) Illegal hex digit in data

to be written.
All read -7 (# read) Not enough room in

destination string.
DDS read -8 0 Bad CRC16.
All write -9 (# written) Unsuccessful write;

retries exhausted.
All -10 0 Button not responding;

possible wrong ID.
DDS write -11 0 String too big for DDS

packet.
ASCII DDS
read

Nulls/continue† (DDS data
length)

Good DDS, but null
byte encountered in
data.

Other
ASCII read

Nulls * 256† (# read) Good read, but null
byte encountered in
data.

* Default Data Structure, a page-oriented packet protocol for Touch Memory buttons.
† Count of nulls in high byte, continuation byte (if applicable) in low byte.

Chapter 4 Statement & Function Reference 185

• Example

REM TOUCH Statement
'Read the data in a Dallas Semiconductor Touch Memory button.

DIM data$ * 64, button_data$ * 100
DIM running%
DIM ibytes%, status%

running% = 1
read_mode% = 2 'we will be reading ASCII strings using

'the Default Data Structure event loop
WHILE running%

CLS
PRINT "Touch a button:" ; 'display a prompt
INPUTEVT 0, 0, 0, 0, type%, symbol%, device%, data$
'get an event

IF (((type% = 1) and (device% = 48)) and (left$(data$, 3) = "04:"))
'check if event was read of a 1994 button
THEN

status% = -1 'initialize error code
ibytes% = 0 'initialize # of bytes read

'data$ now contains the button ID, which
'we will use in the TOUCH statement to
'read the button data.

TOUCH read_mode%, data$, 0, ibytes%, status%, button_data$
IF status% >= 0 THEN 'successful read of button data

OPTION(258) = 1 'turn on the LED
SOUND 1446, 250 'good beep
OPTION(258) = 0 'turn off the LED
CLS
PRINT button_data$
PRINT str$(ibytes%); " bytes read";
SLEEP 2

ELSE
CLS
PRINT "Button read"
PRINT "failed!";
SOUND 698, 250 'sound a low beep
SLEEP 2

ENDIF
ENDIF
WEND

186 Chapter 4 Statement & Function Reference

UCASE$ Function

• Action

Returns a string identical to the parameter string, but with all letters
converted to uppercase.

• Syntax

word$ = UCASE$ (stringexpression$)

• Parameters

Argument Description
stringexpression$ The string to convert to uppercase. This can be a string

variable, string constant, or string expression.

• Remarks

The UCASE$ and LCASE$ statements are helpful in making string
comparisons case insensitive.

See also LCASE$.

• Returns

The string in uppercase letters.

• Example

REM UCASE$() Function
word$ = "UpPercAse"
PRINT word$
word$ = UCASE$(word$)
PRINT word$;
SLEEP 0

Output:
UpPercAse
UPPERCASE

Chapter 4 Statement & Function Reference 187

VAL Function

• Action

Returns the numeric value of a string of digits.

• Syntax

theNum% = VAL (stringexpression$)

• Parameters

Argument Description
stringexpression$ Any sequence of characters that can be interpreted as a

numeric value.

• Remarks

The VAL function searches stringexpression$ for the first digit or minus
sign, and then interprets the remaining consecutive digits as the integer.
The VAL function stops reading the string when it encounters a
character that it does not recognize as a number.

The STR$ function complements VAL.

• Returns

The numeric value of the string.

188 Chapter 4 Statement & Function Reference

• Example

REM VAL() Function
startRAM$ = ENVIRON$(1)
PRINT "Using RAM..."
PRINT "Wait!";
OPEN "data.txt" FOR APPEND as #0
FOR i% = 0 TO 2000 'fill the array and eat up RAM

PRINT #0, "12345678901234567890"
NEXT i%
EndRAM$ = ENVIRON$(1)
usedRAM% = VAL(startRAM$) - VAL(endRAM$)
'convert strings to numbers and subtract
CLS
msg$ = "USED " + STR$(usedRAM%) + " K"
PRINT startRAM$; " - "; endRAM$
PRINT msg$;
SLEEP 5 'pause display for 5 seconds or keypress

Chapter 4 Statement & Function Reference 189

WHILE…WEND Statement

• Action

Executes a series of statements in a loop, as long as a given condition is
true.

• Syntax

WHILE condition
.
.
.
WEND

• Parameters

Argument Description
condition An integer expression that can be translated as true

(nonzero) or false (0).

• Remarks

If the condition argument is true (that is, if it does not equal zero), then
any intervening statements are executed until the WEND statement is
encountered. BASIC then returns to the WHILE statement and checks
the condition argument. If it is still true, the process is repeated. If it is
not true (or if it equals zero), execution resumes with the statement
following the WEND statement.

Note: The DO…LOOP statement provides a more powerful and
flexible loop control structure.

WHILE…WEND loops may be nested to any level. Each WEND
matches the most recent WHILE. An unmatched WHILE or WEND
statement causes an error message.

See also DO…LOOP and FOR...NEXT.

190 Chapter 4 Statement & Function Reference

• Example

REM WHILE...WEND Statement
'*
'* Monitors data collector events and exits the program if
'* the power switch is turned off.
'*
CONST false = 0, true = Not false, NL$ = CHR$(13) + CHR$(10)
DIM display$ * 34
running% = true 'set running% to true
display$ = "Waiting on you..." + NL$ + "P switch = exit"

WHILE running% 'event loop
CLS
PRINT display$; 'display a prompt
INPUTEVT 0, 0, 0, 0, type%, symbol%, device%, data$
'get an event
IF type% = 6 THEN
'if type% event is 6 then power switch was turned off

running% = false 'set running% to false
ELSE

BEEP
ENDIF

WEND

END

Chapter 5 BASIC Compilers 191

Chapter 5

BASIC Compilers

BASIC compiler programs are available for three operating platforms:
Windows 95/98/NT, DOS, and Macintosh. Both the Windows and
Macintosh compilers provide a drag-and-drop interface. The DOS
version is a command line program with parameters.

The compiler program for Windows is Vxbasicw.exe.
The compiler program for DOS is Vxbasic.exe.
The compiler program for Macintosh is Videx BASIC.

Vxbasicw.exe Overview for Windows

The compiler program for Windows 95/98/NT is Vxbasicw.exe.

Vxbasicw.exe for Windows is an executable program. It was developed
to demonstrate the functionality of Vxbasic.dll. You may use the Run
command from the Windows Start menu to pass parameters to
Vxbasicw.exe. Parameters and defaults are identical to the DOS
Vxbasic.exe program. Alternatively, you may start the program by
dragging-and-dropping a source code file onto the Vxbasicw.exe icon.

To execute, Vxbasicw.exe requires the Vxbasic.dll file. The file may be
installed either in the directory with Vxbasicw.exe or in the system path
for DLL’s.

Windows DLL
A 32-bit dynamically linked library (DLL) for compiling your BASIC
source code is included with the Application Builder software. The
header file, Vxbasic.h, documents the calling convention.

192 Chapter 5 BASIC Compilers

Vxbasic.exe Overview for DOS

The compiler program for DOS computers is Vxbasic.exe.

This is a command line program with parameters. Vxbasic.exe has the
following syntax:

vxbasic <input filename.ext>

By convention, you should use .B as the input file extension and .S as
the output file extension. If there are any errors in the code, the compiler
quits at the first error encountered and displays the error and source code
line on the screen.

Videx BASIC Overview for Macintosh

The compiler program for Macintosh computers is Videx BASIC.

Videx BASIC is an AppleScript server that can accept Open Document
events. If there are any errors in the code, the compiler quits at the first
error encountered and displays the error and source code line on the
screen.

Appendix A BASIC Reserved Words 193

Appendix A

BASIC Reserved Words

The following is a list of BASIC reserved words:

ABS HEX$ SEEK
AND IF SEEKH
APPEND INKEY$ SLEEP
AS INPUT$ SGN
ASC INPUTEVT SOUND
BEEP INSTR STEP
BIN LCASE$ STR$
CARDCMD LEFT$ SWAP
CARDSTATUS LEN THEN
CHR$ LET TIME$
CLOSE LOCATE TOKEN$
CLS LOF UCASE$
COMMCLOSE LOFH UNTIL
COMMINPUT LOOK$ VAL
COMMOPEN LOOKUP WEND
COMMPRINT LOOP WHILE
CONST LTRIM$
DATE$ MID$
DIM MOD
DO NEXT
ELSE NOT
ELSEIF ON
END OPEN
ENDIF OPTION
ENVIRON$ OR
EOF PATTERN
ERR PRINT
EXIT REM
FOR RETURN
GOSUB RIGHT$
GOTO RTRIM$

194 Appendix A BASIC Reserved Words

Notes:

Appendix B LaserLite Mx Modulus Information 195

Appendix B
LaserLite Mx Modulus Information
(Notes about hashed indexes on the LaserLite Mx)

Hash tables differ from other tables or arrays because they provide the
LaserLite Mx system a fast way to seek data in an ASCII data file. They
provide nonsequential access to data elements through the use of a hash
function that converts the key field into an integer and divides it by the
size (modulus) of the hash table. The remainder becomes the “key,”
“lookup value,” or “bin” that indexes where to find the data element.
The LaserLite Mx system provides a built-in hash function for
distributing data elements into a hash table.

While the actual hash algorithm for the LaserLite Mx is written in 8051
assembler, it is based on the following C language code example which
is based on Allen Holub’s portable adaptation of Peter Weinberger’s
generic hashing algorithm.

/*---Hash PJW---------------------------------------
/*An adaptation of Peter Weinberger’s (PJW) generic
/*hashing algorithm based on Allen Holub’s version.
/*Accepts a pointer to a datum to be hashed and
/*returns an unsigned integer.
/*--*/

#include <limits.h>
#define BITS_IN_int (sizeof(int) * CHAR_BIT)
#define THREE_QUARTERS ((int)((BITS_IN_int * 3) / 4))
#define ONE_EIGHTH ((int)(BITS_IN_int / 8))
#define HIGH_BITS (~((unsigned int)(~0) >> ONE_EIGHTH))
unsigned int HashPJW (const char * datum)
{
unsigned int hash_value, i;
for (hash_value = 0; *datum; ++datum)
{
hash_value = (hash_value << ONE_EIGHTH) + *datum;
if ((I = hash_value & HIGH_BITS) ! = 0)
hash_value =
(hash_value ^ (I >> THREE_QUARTERS 00 &

~HIGH_BITS;
}
return 9 hash_value);

}

196 Appendix B LaserLite Mx Modulus Information

What Modulus should be used when creating an
Indexed File?

Use the following guidelines to select a modulus for LaserLite Mx
indexed files:

• = Optimal trade-off between performance and space efficiency is
achieved when the anticipated number of records is less than
twice the modulus.

• = A prime number modulus provide the best distribution of data.
The following prime numbers selections can provide optimal
distribution:

13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11213, 21701, 23209, 44497.

• = The LaserLite Mx can support a modulus up to 65535.

Appendix C Sample BASIC Programs 197

Appendix C

BASIC Sample Programs

This appendix contains two BASIC programs: Default.b and
DEMOMX.b. Default.b is the default application that is loaded with the
operating system if another application is not specified. DEMOMX.b is
a demo application for the LaserLite Mx. It contains the subroutines
process_cardcmd_error and process_card_error that are referred to in
the CARDCMD statement examples.

Default.b

'* This is the default application which is loaded with the
'* operating system unless another application is specified.
'
const false% = 0 'define constants
const true% = not false%
const backward% = true%
const forward% = false%

const mode_norm% = 0 'defines scrolling behavior
const mode_up% = 1
const mode_dn% = 2
const delimiter$ = chr$(13) + chr$(10)
'delimits data file lines with a carriage return/line feed
const low_voltage% = 45 'voltage which triggers warnings
const x_delay% = 150 'define delay time
dim data$ * 64 'dimension strings
dim display$ * 64
dim full_display$ * 64
dim bar$ * 64
dim bar2$ * 64
dim voltage%
dim info_index%
dim shift%
dim running%
dim mode%
dim n_times%

198 Appendix C Sample BASIC Programs

sound 2793, 250 'startup beep
sound 2637, 250
sound 2793, 250

open "data.txt" for append as #0 'open and name data file
if err then gosub file_error

data$ = "" 'initialize variables
display$ = ""
mode% = mode_norm%
running% = true%
voltage% = 60
info_index% = 0
shift% = 0
while running% 'event loop

gosub check_voltage 'check battery voltage
cls
print left$(display$, 16) 'display a prompt
print "Scan: " ;

inputevt 6, 1, 16, 2, type%, symbol%, device%, data$
'get an event

on type% gosub fn_null, fn_input, fn_exit,|
evt_delete, fn_up, fn_down, fn_power, evt_pfail,|
evt_esc, fn_null, fn_null, fn_null, fn_null,|
fn_null, fn_null, fn_null, fn_null, fn_null,|
fn_left, fn_right, evt_mem, evt_bat, evt_f1,|
evt_f2, evt_f3, evt_f4, evt_delete
'process the event

wend
sound 1760, 250 'exit beep
sound 1568, 250
sound 1397, 250
end 'return to command line

'*
'* fn_null
'* description: Do nothing function.
'*

fn_null:
return

Appendix C Sample BASIC Programs 199

'*
'* fn_input
'* description: Respond to a user input event. Beeps and
'* blinks the valid scan LED, and then appends the input to
'* the end of the data file, along with the current date
'* and time.
'*

fn_input:
if device% = 1 then

if len(data$) = 0 then
'it's an ENTER key, with no data
sound 698, 250 'sound a low beep
return

endif
endif

option(258) = 1 'turn on the LED
sound 1446, 250 'good beep
option(258) = 0 'turn off the LED

seek #0, 0, e 'set file position to end of file
print #0, date$; " " ; time$; " " ; data$
'write input, time & date to the file
if err then gosub file_error

display$ = data$ 'display input on screen
mode = mode_dn% 'same as scrolling down to

'last line of file
full_display$ = data$ 'initialize for scroll right

'& left
shift% = 0

return

'*
'* fn_exit
'* description: Respond to an exit event. Exit events are
'* generated when an unlock command is sent to the unit
'* during an INPUTEVT statement. The typical response is to
'* end the program, returning to the command line.
'*

fn_exit:
running% = false%

return

200 Appendix C Sample BASIC Programs

'*
'* fn_up
'* description: Respond to a scroll-up event. These events
'* are generated when the scroll-up key is pressed.
'* Respond by getting an input token from the data file,
'* and displaying it on the screen.
'*

fn_up:
'skip the last token displayed, if
'we were scrolling down or scanning

if mode% = mode_dn% then
bar$ = token$(0, delimiter$, backward%)

endif

display$ = token$(0, delimiter$, backward%) 'get next line
if display$ = "" then

display$ = "-TOP OF DATA-"
mode = mode_norm%

else
display$ = mid$(display$, 21) 'remove date and time
mode% = mode_up%

endif

sound 1397, 10 'notify user that we got the key press

full_display$ = display$ 'initialize scroll right & left
shift% = 0

return

Appendix C Sample BASIC Programs 201

'*
'* fn_down
'* description: Respond to a scroll-down event. These
'* events are generated when the scroll-down key is
'* pressed. Respond by getting an input token from the data
'* file, and displaying it on the screen.
'*

fn_down:
'skip the last token displayed, if we were scrolling up

if mode% = mode_up% then
bar$ = token$(0, delimiter$, forward%)

endif
display$ = token$(0, delimiter$, forward%)

'get the next line if we're already at the bottom
'of the file, display system information

if display$ = "" then
gosub scroll_info
mode% = mode_norm%

else
'remove the date and time

display$ = mid$(display$, 21)
mode% = mode_dn%

endif
sound 1397, 10 'notify user that we got the keypress
full_display$ = display$ 'initialize for scroll right & left
shift% = 0
return

'*
'* fn_left
'* description: Scroll left key was pressed (LaserLite
'* Pro/Mx). Scroll to the left to display a long entry.
'*

fn_left:
sound 1397, 10 'click so the user knows we got the key
'check whether we have scrolled all the way
'off the display otherwise, increment position
if shift% < len (full_display$) then

shift% = shift% + 1
endif
display$ = "" 'build display one character at a time
for foo% = 1 to 16

if len (full_display$) >= (foo% + shift%) then
display$ = display$ + mid$(full_display$, foo%+shift%, 1)
endif

next foo%
return

202 Appendix C Sample BASIC Programs

'*
'* fn_right
'* description: Scroll right key was pressed (LaserLite
'* Pro/Mx only). Scroll right to display a long entry.
'*

fn_right:
sound 1397, 10 'click so the user knows we got the key
if shift% > 0 then 'check if we have scrolled back to

shift% = shift% - 1 'the beginning of the display,
endif 'otherwise decrement position

'build display one character at a time
display$ = ""
for foo% = 1 to 16

if len (full_display$) >= (foo% + shift%) then
display$ = display$ + mid$(full_display$, foo%+shift%, 1)

endif
next foo%
return

'*
'* fn_power
'* description: Respond to a power event. These events are
'* generated when the power switch is moved to the off
'* position. Respond by setting the hardware into a
'* low-power state.
'*

fn_power:
option(256) = 0 'turn off the LCD
sleep 0 'sleep indefinitely
option(256) = 1 'turn the LCD back on
return

'*
'* file_error
'* description: There was an error opening or writing to a
'* file. Alert the user.
'*

file_error:
gosub ring
cls
print "Error accessing"
print "data file!";
sleep 10
return

Appendix C Sample BASIC Programs 203

'*
'* evt_esc
'* description: Escape key was pressed (LaserLite Pro/Mx).
'*

evt_esc:
sound 1397, 10 'click so the user knows we got the key
cls
print "Escape key"
print "was pressed.";
n_times% = 1
gosub kill_time

return

'*
'* evt_mem
'* description: Memory key was pressed (LaserLite Pro/Mx).
'* Display remaining available RAM.
'*

evt_mem:
sound 1397, 10 'click so the user knows we got the key
cls
print environ$(1); " free";
n_times% = 2
gosub kill_time

return

'*
'* evt_bat
'* description: Battery key was pressed (LaserLite Pro/Mx).
'* Display battery voltage.
'*

evt_bat:
sound 1397, 10 'click so the user knows we got the key
cls
print environ$(0); " volts";
n_times% = 2
gosub kill_time

return

204 Appendix C Sample BASIC Programs

'*
'* evt_f1
'* description: F1 key was pressed (LaserLite Pro/Mx).
'*

evt_f1:
sound 1397, 10 'click, so the user knows we got the key
cls
print "F1 key was"
print "pressed.";
n_times% = 1
gosub kill_time

return

'*
'* evt_f2
'* description: F2 key was pressed (LaserLite Pro/Mx).
'*

evt_f2:
sound 1397, 10 'click, so the user knows we got the key
cls
print "F2 key was"
print "pressed.";
n_times% = 1
gosub kill_time

return

Appendix C Sample BASIC Programs 205

'*
'* evt_f3
'* description: F3 key was pressed (LaserLite Pro/Mx).
'*

evt_f3:
sound 1397, 10 'click, so the user knows we got the key
cls
print "F3 key was"
print "pressed.";
n_times% = 1
gosub kill_time

return

'*
'* evt_f4
'* description: F4 key was pressed (LaserLite Pro/Mx).
'* Display operating system.
'*

evt_f4:
sound 1397, 10 'click, so the user knows we got the key
bar$ = environ$(2)
cls
print left$ (bar$, 16)
if len(bar$) > 16 then

print right$ (bar$, len(bar$)-16);
endif
n_times% = 2
gosub kill_time

return

206 Appendix C Sample BASIC Programs

'* evt_delete
'* description: F5 key was pressed (LaserLite Pro/Mx)
'* or a 5 space barcode was scanned.
'* Delete most recent entry.

evt_delete:
if lof(0) = 0 then 'see if there is any data in file

sound 2349,250
cls
print "There is no data"
print "to delete!";
n_times% = 4
gosub kill_time
return

endif
seek #0, 0, e 'move pointer to end of data file
bar$ = token$ (0, delimiter$, backward%)
cls
print "Delete data? Y"
bar2$ = mid$ (bar$, 21) 'remove date and time
foo% = len (bar2$)
if foo% <= 14 then

print bar2$;
locate 1,14: print " N";

else
print ".."; right$ (bar2$, 12); " N";

endif
gosub questiontone
do

foo% = asc(inkey$())
loop until (foo% = 2) | 'up arrow

or (foo% = 4) | 'down arrow
or (foo% = 89) | rem 'Y'
or (foo% = 78) | rem 'N'
or (foo% = 132) | rem MEM (Y unshifted)
or (foo% = 42) | rem '*' (N unshifted)

if (foo%=2) or (foo%=89) or (foo%=132) then
nbytes% = len (bar$) + 2 'delete <cr/lf> characters
gosub truncate
gosub deletetone
display$ = token$(0, delimiter$, backward%)
if display$ = "" then

display$ = "-TOP OF DATA-"
mode = mode_norm%

else
display$ = mid$(display$, 21)'remove date & time
mode% = mode_up%

endif
full_display$ = display$
shift% = 0

else
sound 2349, 250

endif
return

Appendix C Sample BASIC Programs 207

'*
'* check_voltage
'* description: Get the current voltage. If it is below
'* low_voltage% and has changed, alert the user.
'*

check_voltage:
bar$ = left$(environ$(0), 3)
foo% = (val(left$(bar$, 1)) * 10) + val(right$(bar$, 1))

if foo% < low_voltage% then
if foo% < voltage% then

cls
print "Low batteries."
print environ$(0) ; " volts" ;
gosub ring
sleep 10
voltage% = foo%

end if
else

voltage% = foo%
end if

return

'*
'* evt_pfail
'* description: It looks like power was lost when the unit
'* was not asleep. This event is generated once if the
'* unexpected loss of power can be detected.
'*

evt_pfail:
cls
print "Power loss,"
print "verify data.";
gosub ring
sleep 0

return

'*
'* ring
'* description: Ring to alert the user of an error.
'*

ring:
for ring_i% = 1 to 10

sound 2093, 50
sound 2794, 50

next ring_i%
return

208 Appendix C Sample BASIC Programs

'*
'* delete tone
'* description: Tone that indicates that a record has
'* been deleted.
'*

deletetone:
sound 3620,150
sound 2349,250

return

'*
'* questiontone
'* description: Tone used when asking user to confirm if
'* data is to be deleted.
'*

questiontone:
sound 2349, 150
sound 3620, 250

return

'*
'* scroll_info
'* description: Display various information when you have
'* scrolled down to the bottom of the data file.
'*

scroll_info:
info_index% = info_index% + 1
if 3 < info_index% then

info_index% = 0
end if

on info_index% gosub os_info, volt_info, time_info, mem_info
return

volt_info: 'display battery voltage
display$ = environ$(0) + " volts"

return

os_info: 'display operating system name
display$ = environ$(2)

return

time_info: 'display time
display$ = time$()

return

mem_info: 'display available RAM
display$ = environ$(1) + " free"

return

Appendix C Sample BASIC Programs 209

'*
'* truncate
'* description: Remove nbytes% from the data file.
'*

truncate:
if nbytes% <= 0 then

return 'nbytes% must be positive
end if
high% = lofh(0) 'get the size of the file in
low% = lof(0) 'high and low words
if nbytes% <= low% then

low% = low% - nbytes%
'if the low word is >= nbytes%, then
'just subtract nbytes% from low word

elseif 0 < high% then
'otherwise, if the high byte isn't zero,

high% = high% - 1
'subtract one from the high byte and set

low% = ((low% - nbytes%) + 32767) + 1
'the low byte to low% + 32768 - nbytes%

else 'otherwise, the file isn't nbytes% long
high% = 0
low% = 0

endif
lof(0) = high%, low% 'set the new file length

return

'*
'* kill time
'* description: Delays program operation while information
'* is being displayed.
'*

kill_time:
for foo% = 1 to (n_times% * x_delay%)
next foo%

return

210 Appendix C Sample BASIC Programs

MXDEMO.B

The following BASIC program demonstrates the functionality of a
LaserLite Mx and accesses the LaserLite Mx memory card.

' MXDEMO.B
' This program demonstrates the functionality of a
' LaserLite Mx. The main application writes data to a file
' and allows scrolling and deleting. In addition, another
' routine called by the <F1> key, gets a number in a
' sequence, appends it to clock data, writes it to a file on
' the memory card, reads it back and displays it. Another
' routine, invoked by pressing <F3>, offers to search for
' one of the sequence numbers in the database.
'

'define constants
const false% = 0
const true% = not false%
const backward% = true%
const forward% = false%
const mode_norm% = 0 'defines scrolling behavior
const mode_up% = 1
const mode_dn% = 2
const mode_bottom% = 3
const mode_top% = 4
const low_voltage% = 45 'voltage to trigger warnings
const x_delay% = 150 'define delay time
dim data$ * 64 'dimension strings
dim display$ * 64
dim full_display$ * 64
dim bar$ * 64
dim bar2$ * 64
dim buffer_var$ * 256
dim voltage%
dim info_index%
dim shift%
dim running%
dim mode%
dim n_times%
dim cstatus$
dim cardreturn$ * 256
dim crdcmd$ * 256

Appendix C Sample BASIC Programs 211

beginning:
mode% = mode_norm%
running% = true%
voltage% = 60
info_index% = 0
shift% = 0
NL$ = chr$(13) + chr$(10) 'carriage return/line feed
sound 2793, 250 'startup beep
sound 2637, 250: sound 2793, 250
open "dataram.txt" for append as #0

'open & name data file
cls
print "Starting"; NL$; "application....";
cardcmd O, 2203, I, "data.txt"
'open a data file on the memory card
gosub process_cardcmd_error
'report errors from sending command to card
print #0, "cardresult% = "; str$(cardresult%)
IF crderr% = 0 THEN

cardresult% = cardstatus(cardreturn$) 'get results
gosub process_card_error 'handle any errors

ELSE
goto won't_work

ENDIF
data$ = ""
display$ = ""
cardcmd C, S
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)

'determine file handle being used and record it in dhandle$
'so we can be sure it is the only one that allows user entry

gosub process_card_error
chandle$ = mid$(cardreturn$,14,2)
dhandle$ = chandle$ 'initialize variables
while running% 'event loop

gosub check_voltage 'check battery voltage
cls
print left$(display$, 16) 'display a prompt
print "Scan: ";
inputevt 6, 1, 16, 2, type%, symbol%, device%, data$

'get event
on type% gosub fn_null, fn_input, fn_exit,|

evt_delete, fn_up, fn_down, fn_power, evt_pfail,|
evt_esc, fn_null, evt_nomodule, evt_nocard,|
evt_badcard, evt_cardID, evt_card_interrupted,|
fn_null, fn_null, fn_null, fn_left, fn_right,|
evt_mem, evt_bat, evt_f1, evt_f2, evt_f3, evt_f4,|
evt_delete 'process the event

wend
sound 1760, 200 'exit beep
sound 1568, 200
sound 1397, 200

end 'return to command line

212 Appendix C Sample BASIC Programs

'*
'* fn_null
'* description: Do nothing function.
'*

fn_null:
return

'*
'* fn_input
'* description: Respond to a user input event by beeping
'* and blinking the valid scan LED, and appending the input
'* to the end of the data file along with the current date
'* and time.
'*

fn_input:
if device% = 1 then

if len(data$) = 0 then
'it's an ENTER key, with no data
sound 698, 250 'sound a low beep
return

endif
endif
cardcmd F%, data$ 'search for data$ in data file
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
if (cardresult% = 35) then 'data not found in data file

option(258) = 1 'turn on the LED
sound 1446, 250 'good beep
option(258) = 0 'turn off the LED
record$ = data$ + chr$(09) + time$ + chr$(09) + date$

'build a record with fields that are tab delimited
IF dhandle$ <> chandle$ THEN gosub just_open

'be sure we are going to write to correct file
cardcmd A, record$ 'append the record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
display$ = data$ 'display the input on the screen
mode = mode_dn% 'same as if we had just scrolled

'down to the last line of file
full_display$ = data$

'initialize for scroll right & left
shift% = 0

elseif (cardresult% <> 0) then
gosub process_card_error

else 'duplicate scan, do not accept it
cls
locate 0,0
print data$
print "already scanned";
gosub card_error_tone
'n_times% = 1
'gosub kill_time

Appendix C Sample BASIC Programs 213

sleep 1000
endif

return

'*
'* fn_exit
'* description: Respond to an exit event. Exit events are
'* generated when an unlock command is sent during an
'* INPUTEVT statement. The typical response is to end the
'* BASIC program, returning to the command line.
'*

fn_exit:
running% = false%

return

214 Appendix C Sample BASIC Programs

'*
'* fn_up
'* description: Respond to a scroll-up event. These events
'* are generated when the scroll-up key is pressed.
'*

fn_up:
sound 1397, 10 'click so user knows we got the key

if (mode% = mode_bottom%) OR (mode% = mode_down%) then
'if we have been scrolling down or we're at the
'bottom already, then fetch the last record.

cardcmd M
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
mode% = mode_norm%

else

cardcmd M, 1, R 'otherwise move back one record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

endif

if cardresult% = 37 then 'top of file
display$ = " -TOP OF DATA-"
mode% = mode_top%

elseif cardresult% = 23 then 'no data
display$ = "-DATA FILE EMPTY"
mode% = mode_top%

else 'otherwise get the record
display$ = cardreturn$
mode% = mode_up%

endif

'prepare for shift left and right
full_display$ = display$
shift% = 0

return

Appendix C Sample BASIC Programs 215

'*
'* fn_down
'* description: Respond to a scroll-down event. These
'* events are generated when the scroll-down key is
'* pressed.
'*

fn_down:
sound 1397, 10 'click so the user knows we got the key

if (mode% = mode_top%) then 'we are at top of file
'so don't move pointer

cardcmd M
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

'get the next line (if not at the top of the file)
else

cardcmd M, 1, F
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

endif

if cardresult% = 36 then
gosub scroll_info

'if at end of file, display system info
mode = mode_bottom%

elseif cardresult% = 23 then
gosub scroll_info
mode = mode_bottom%

else
display$ = cardreturn$
mode% = mode_dn%

endif

full_display$ = display$
'initialize for scroll right & left

shift% = 0
return

216 Appendix C Sample BASIC Programs

'*
'* fn_left
'* description: Scroll left key was pressed (LaserLite
'* Pro/MX). Scroll to the left to display a long entry.
'*

fn_left:
sound 1397, 10 'click so the user knows we got the key

'check if we have scrolled all the way off of
'the display otherwise, increment position

if shift% < len (full_display$) then
shift% = shift% + 1

endif

'build display one character at a time
display$ = ""
for foo% = 1 to 16

if len (full_display$) >= (foo% + shift%) then
display$ = display$ + mid$(full_display$, foo% + shift%, 1)
endif

next foo%
return

'*
'* fn_right
'* description: Scroll right key was pressed (LaserLite
'* Pro/MX). Scroll to the right to display a long entry.
'*

fn_right:
sound 1397, 10 'click so the user knows we got the key

'check if we have scrolled all the way back
'to the beginning of the display otherwise
'decrement position

if shift% > 0 then
shift% = shift% - 1

endif

display$ = "" 'build display one character at a time
for foo% = 1 to 16

if len (full_display$) >= (foo% + shift%) then
display$ = display$ + mid$(full_display$, foo%+shift%, 1)
endif

next foo%
return

Appendix C Sample BASIC Programs 217

'*
'* fn_power
'* description: Respond to a power event. These events are
'* generated when the power switch is moved to the off
'* position. Respond by setting the hardware to a low-power
'* state.
'*

fn_power:
'option(256) = 0 'turn off the LCD
sleep 0 'sleep indefinitely
'option(256) = 1 'turn the LCD back on
return

'*
'* file_error
'* description: There was an error opening or writing to a
'* file. Alert the user.
'*

file_error:
gosub ring
cls
print "Error accessing "
print "data file!"
sleep 10

return

'*
'* evt_esc
'* description: Escape key was pressed (LaserLite Pro/Mx).
'*

evt_esc:
sound 1397, 10 'click so user knows we got the key
cls
print "Escape key"
print "was pressed.";
'n_times% = 1
'gosub kill_time
sleep 1000

return

218 Appendix C Sample BASIC Programs

'*
'* evt_mem
'* description: Memory key was pressed (LaserLite Pro/Mx).
'* Display remaining available RAM.
'*

evt_mem:

sound 1397, 10 'click so user knows we got the key

retry_mem:
cardcmd C, F
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

card_space$ = mid$ (cardreturn$, 10, 4) 'avail space (hex)
total_files$ = mid$ (cardreturn$, 14, 2) '# of files (hex)

foo% = bin (card_space$, 4) 'convert hex to integer
card_space$ = str$ (foo%) 'convert integer to string

foo% = bin (total_files$, 2)
total_files$ = str$ (foo%)

cls
print total_files$; " files on card" 'display available
print card_space$; "K available"; 'space on card
'n_times% = 3
'gosub kill_time
sleep 3000

return

'*
'* evt_bat
'* description: Battery key was pressed (LaserLite Pro/Mx).
'* Display battery voltage.
'*

evt_bat:
sound 1397, 10 'click so user knows we got the key
cls
print environ$(0); " volts";
sleep 3000

return

Appendix C Sample BASIC Programs 219

'*
'* evt_f1
'* description: F1 key was pressed (LaserLite Pro/Mx).
'*

evt_f1:
'sound 1397, 10 'click so user knows we got the key
cls
gosub rwloop

return

'*
'* evt_f2
'* description: Gets the system restarted.
'*

evt_f2:
sound 1397, 10 'click
cls
print "Updating card..."

just_open: 'This routine opens the data file for
'appending user input

cardcmd O, 2203, I, "data.txt"
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
cardcmd C, S 'makes sure that we know this is the

'file to use for user input
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
chandle$ = mid$(cardreturn$,14,2)
dhandle$ = chandle$

return

220 Appendix C Sample BASIC Programs

'*
'* evt_f3
'* description: This is a routine for searching records
'* written to the numbers file. It presents an input field
'* into which the user may key in up to a five character
'* number. Then the program searches for that number.
'* It is a demonstration of lookup for records written on
'* the fly.
'*

evt_f3:
sound 1397, 10 'click so user knows we got the key
cls
locate 0,0
print "Opening file on"
print "card.";
gosub questiontone
cardcmd O, 2203, I, "rwloop2.txt"

'This is numbers database
gosub process_cardcmd_error
IF crderr% THEN return
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
cardcmd C, S
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
chandle$ = mid$(cardreturn$,14,2)

'Record current file handle
seekprompt$ = "Number to seek"

'Set up prompt for the user
looping% = true% 'Set up an inputevt loop
cls
while looping%

gosub check_voltage 'check battery voltage
cls
print seekprompt$; NL$; "-> "; 'display a prompt
inputevt 4, 1, 10, 2, type%, symbol%, device%, data$

'get an event
on type% gosub fn_null, fn_seek, fn_quitseek,|

fn_quitseek, fn_quitseek, fn_quitseek, fn_power,|
evt_pfail, fn_quitseek, fn_null, evt_nomodule,|
evt_nocard, evt_badcard, evt_cardID,|
evt_card_interrupted, fn_null, fn_null, fn_null,|
fn_left, fn_right, evt_mem, evt_bat, fn_quitseek,|
fn_quitseek, fn_quitseek, fn_quitseek, fn_quitseek

'process the event
'Some keys will quit the function. Only the
'Enter key with data will perform the seek.

wend
gosub deletetone 'exit tone

return

Appendix C Sample BASIC Programs 221

'*
'* fn_seek
'* description: Demo for lookup in the numbers file.
'*

fn_seek:
cardcmd F, data$
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
IF cardresult% = 0 THEN

sound 1397, 10
rtime$ = mid$(cardreturn$,instr(cardreturn$,|

chr$(09))+1,8)
rdate$ = right$(cardreturn$,5)
num$ = left$(cardreturn$,instr(cardreturn$,chr$(09))-1)
cls
locate 0,0
print "Found! "; num$
print rdate$; " @ "; rtime$;
device% = 0
while device% <> 1

inputevt 0,0,0,0, type%, symbology%, device%, data$
wend
sound 1397, 10

ELSEIF cardresult% = 35 THEN
sound 698, 700
cls
locate 0,0
print data$; " not in file..."
device% = 0
while device% <> 1

inputevt 0,0,0,0, type%, symbology%, device%, data$
wend
sound 1397, 10

ELSE
gosub process_card_error
looping% = false%

ENDIF
return

222 Appendix C Sample BASIC Programs

'*
'* fn_quitseek
'* description: Get out of the seek loop.
'*

fn_quitseek:
looping = false%

return

'*
'* evt_f4
'* description: F4 key was pressed (LaserLite Pro/Mx).
'* Display operating system.
'*

evt_f4:
' optnum = 255
' optval = 0
' do
' sound 1397, 10 'click so user knows we got the key
' cls
' print "option("; optnum ;")=";optval
' print "new #: ";
' inputevt 8,1,11,2,opt_type,opt_sym,opt_dev,opt_data$
' if opt_type = 1 then
' optnum = val(opt_data$)
' optval = option(optnum)
' endif
' if optnum = 0 then
' print opt_type, opt_data$
' gosub kill_time
' endif
' loop while opt_type = 1

'bar$ = environ$(2)+ " " + left$(environ$(4),5) + " " +|
right$(environ$(4),5)

if vertoggle = 0 then
bar$ = environ$(2)
vertoggle = 1

else
bar$ = environ$(4)
vertoggle = 0

endif
cls
print left$ (bar$, 16)
if len(bar$) > 16 then

print right$ (bar$, len(bar$)-16);
'print right$ (bar$,16);

endif
'n_times% = 2
'gosub kill_time
sleep 2000

return

Appendix C Sample BASIC Programs 223

'*
'* evt_delete
'* description: F5 key was pressed or a barcode consisting
'* of 5 spaces was scanned. Delete the current record.
'* The current record may be the last record when appending
'* or the record being viewed when scrolling.
'*

evt_delete:

cardcmd M 'get the current record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

IF cardresult% = 23 THEN '23 means no data
sound 2349,250
cls
print "There is no data"
print "to delete!";
n_times% = 3
gosub kill_time
display$ = ""
return

ENDIF

bar2$ = cardreturn$ 'make the user confirm
cls
print "Delete data? Y"
foo% = len (bar2$)
if foo% <= 14 then

print bar2$;
locate 1,14
print " N";

else
print ".."; left$ (bar2$, 12); " N";

endif
gosub questiontone

224 Appendix C Sample BASIC Programs

do
foo% = asc(inkey$())

loop until (foo% = 2) | rem up arrow
or (foo% = 4) | rem down arrow
or (foo% = 89) | rem 'Y'
or (foo% = 78) | rem 'N'
or (foo% = 132) | rem MEM (Y unshifted)
or (foo% = 42) | rem '*' (N unshifted)

if (foo%=2) or (foo%=89) or (foo%=132) then
'go ahead and delete (hide) the record at pointer
cardcmd M, H
gosub process_cardcmd_error
csvalid% = 0
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

gosub deletetone
cls
locate 0,0
print "..record deleted"

cardcmd M 'bring up the next record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

cls 'prepare the display
display$ = cardreturn$

IF cardresult% = 23 THEN
'if no more records then its empty
display$ = "-DATA FILE EMPTY-"
mode = mode_norm%

ENDIF

full_display$ = display$
'initialize for scroll left & right

shift% = 0

else
sound 2349, 250

endif
return

Appendix C Sample BASIC Programs 225

'*
'* check_voltage
'* description: Get the current voltage. If it is below
'* low_voltage% and has changed, alert the user.
'*

check_voltage:
bar$ = left$(environ$(0), 3)
foo% = (val(left$(bar$, 1)) * 10) + val(right$(bar$, 1))
if foo% < low_voltage% then

if foo% < voltage% then
cls
print "Low batteries."
print environ$(0) ; " volts" ;
gosub ring
sleep 10000
voltage% = foo%

end if
else

voltage% = foo%
end if

return

'*
'* evt_pfail
'* description: It looks like power was lost when the unit
'* was not asleep. This event is generated once if the
'* unexpected loss of power can be detected.
'*

evt_pfail:
cls
print "Power loss,"
print "verify data.";
gosub ring
sleep 10000

return

226 Appendix C Sample BASIC Programs

'*
'* ring
'* description: Ring to alert the user of an error.
'*

ring:
for ring_i% = 1 to 10

sound 2093, 50
sound 2794, 50

next ring_i%
return

'*
'* delete tone
'* description: Tone that indicates that a record has been
'* deleted.
'*

deletetone:
sound 3620,150
sound 2349,250

return

'*
'* card_error_tone
'* description: Tone indicating a card command error.
'*

card_error_tone:
sound 2349, 300
sound 1885, 600

return

'*
'* questiontone
'* description: Tone used when asking user to confirm if
'* data is to be deleted.
'*

questiontone:
sound 2349, 150
sound 3620, 250

return

Appendix C Sample BASIC Programs 227

'*
'* scroll_info
'* description: Display various information when you have
'* scrolled down to the bottom of the data file.
'*

scroll_info:
info_index% = info_index% + 1
if 6 < info_index% then

info_index% = 0
end if

on info_index% gosub os_info, volt_info, time_info,|
date_info, mem_info, cardfile_info, cardmem_info

return

volt_info: 'display battery voltage
display$ = environ$(0) + " volts"

return

os_info: 'display operating system name
display$ = environ$(2)

return

time_info: 'display time
display$ = time$()

return

date_info: 'display current date
display$ = date$()

return

mem_info: 'display available RAM
display$ = environ$(1) + " RAM free"

return

cardfile_info: 'call card memory routine
cardcmd C, F
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
total_files$ = mid$ (cardreturn$, 14, 2)

'# of files (hex)
foo% = bin (total_files$, 2) 'convert hex to integer
total_files$ = str$ (foo%) 'convert integer to string
cls
display$ = total_files$ + " files on card"

'display number of files on card

return

228 Appendix C Sample BASIC Programs

cardmem_info: 'call card memory routine
cardcmd C, F
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
card_space$ = mid$ (cardreturn$, 10, 4)

'available space (hex)
foo% = bin (card_space$, 4) 'convert hex to integer
card_space$ = str$ (foo%) 'convert integer to string
cls
display$ = card_space$ + "K available"

'display available space on card
return

'*
'* truncate
'* description: Remove nbytes% from the data file (not
'* used with Mx data files).
'*

truncate:
if nbytes% <= 0 then 'nbytes% must be positive

return
end if
high% = lofh(0) 'get the size of the file in
low% = lof(0) 'high and low words
if nbytes% <= low% then

low% = low% - nbytes%
'if the low word is >= nbytes%, then
'just subtract nbytes% from low word

elseif 0 < high% then
high% = high% - 1
low% = ((low% - nbytes%) + 32767) + 1

'otherwise, if the high byte isn't zero,
'subtract one from the high byte and set
'the low byte to low% + 32768 - nbytes%
'otherwise, the file isn't nbytes% long

else
high% = 0
low% = 0

endif
lof(0) = high%, low% 'set the new file length

return

Appendix C Sample BASIC Programs 229

'*
'* kill_time
'* description: Delays program operation while information
'* is being displayed.
'*

kill_time:
for foo% = 1 to (n_times% * x_delay%)
next foo%

return

'*
'* rwloop
'* description: Keeps an increasing number count (starting
'* at 1).Reads system date and time to a memory variable.
'* Writes a record to the memory card. Reads the record
'* out. Displays it on the screen. Escape key exits the
'* loop.
'*

rwloop:
sound 1397, 10 'click so user knows we got the key
cls
locate 0,0
print "Opening file on"
print "SSFDC.";
gosub questiontone
gosub init_card
cardcmd O, 2203, I, "rwloop2.txt"

'open the numbers data file
gosub process_cardcmd_error
IF crderr% THEN return
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

cardcmd C, S 'record the current file handle
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
chandle$ = mid$(cardreturn$,14,2)

cardcmd M 'Get the current record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
IF cardresult% = 23 THEN 'If file is empty, then

loopcount% = 1 'we'll start at 1.
'Otherwise we'll increment

ELSE 'the last number written
loopcount% = |

val(left$(cardreturn$,instr(cardreturn$,chr$(09))-1)) + 1
ENDIF

230 Appendix C Sample BASIC Programs

WHILE running% and (27 <> ASC(INKEY$())) AND (crderr% = 0)
'set up a loop where escape key exits

nowdate$ = left$(DATE$(),5)
'fetch date and time from system and build a record
nowtime$ = TIME$()
cardrecord$ = str$(loopcount%) + chr$(09) + nowtime$|

+ chr$(09) + nowdate$
cardcmd A, cardrecord$ 'add it
IF crderr% THEN return
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
cardcmd M, -1, F 'move to bottom of file
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$) 'get record
gosub process_card_error
timewritten$ = cardreturn$
locate 0,0
print "Record Read....."
print timewritten$; 'then display it
loopcount% = loopcount% + 1 'increment number

WEND
gosub deletetone 'click so user knows we got the key

return

'*
'* send_card_cmd
'* description: Go to the routine that initializes the card
'* and updates its status then send the card command string
'* to the card. Clear the card status valid flag before
'* returning.
'*

send_card_cmd:
cardcmd crdcmd$
gosub process_cardcmd_error
csvalid% = 0

return

Appendix C Sample BASIC Programs 231

'*
'* init_card
'* description: Figures out what state the card module is
'* in and sets it in the last known state. If the Mx has
'* gone to sleep since the last command issued, then the
'* memory card software must be rebooted. In future
'* releases, this will be handled automatically by the
'* operating system.If the application restarted since the
'* last card command, then it is not necessary to update
'* card status.
'*

init_card:
cardcmd V 'The version number tells us what program

'is running (whether the card is booted)
gosub process_cardcmd_error
cardresult% = cardstatus(buffer_var$)
IF "MCF" = mid$(buffer_var$,3,3) THEN
'Firmware is running

gosub boot_card
ELSEIF "DMS" = mid$(buffer_var$,3,3) THEN

'Card is already booted. No action needed.
ELSE 'No response. Reset it. Somebody

'probably pulled the card
cardcmd -1 'reset card processor.
gosub boot_card

ENDIF
return

'*
'* boot_card
'* description: Boots the memory card XRAM code.
'*

boot_card:
cardcmd ASC("B") 'Send boot command to start DMS
cardresult% = cardstatus(buffer_var$)

'software in the card.
return

232 Appendix C Sample BASIC Programs

'*
'* process_card_error
'* description: Since the cardstatus() function returns an
'* integer error code, it may be quickly analyzed and
'* processed with each call.
'*

process_card_error:
IF crderr% THEN

'already handled by cardcmd error processing

ELSEIF (cardresult% = 0)THEN

ELSEIF (cardresult% = 5)THEN
error5% = true%
goto evt_badcard

ELSEIF (cardresult% = 32) THEN
'This error means 'no file open'

gosub card_error_tone
'This routine assumes it was open until

cls 'the card was removed. The system restarted
locate 0,0 'but didn't have any information to re-open
print " Card Process " 'the file and set the pointer.
print " interrupted ";
n_times% = 1
gosub kill_time
cls
locate 0,0
print " Restarting "
print " application ";
sleep 32767
cls
goto beginning

ELSEIF (cardresult% = 37) | 'top of file
OR (cardresult% = 36) | 'bottom of file
OR (cardresult% = 23) THEN 'no data

ELSE

error_ring:
gosub card_error_tone 'otherwise just report error number

cls
locate 0,0
print "Crd module error"
print "# "; str$(cardresult%);
n_times% = 3
gosub kill_time

ENDIF

return

Appendix C Sample BASIC Programs 233

'*
'* process_cardcmd_error
'* description: Look for an error with CARDCMD and report
'* it.
'*

process_cardcmd_error:
crderr% = ERR
IF crderr% = 0 THEN 'no error
ELSEIF crderr% = -1 THEN

'Time-out error, perhaps someone pulled out the card or the
'memory card was busy when CARDCMD tried to issue a command.
'Remember, pulling out the card freezes the memory card
'processor. It must be reset for it to restart. That's why
'it's best to go to sleep and let the system bring it back
'up when it wakes up.

cls
locate 0,0
print "No response from"
print " memory card! ";
gosub card_error_tone
sleep 1

ELSEIF crderr% = -2 THEN
goto evt_nomodule

ELSEIF crderr% = -3 THEN
goto evt_nocard

ELSE
cls
locate 0,0
print " Cardcmd error "
print " # ";str$(crderr%) ;
gosub card_error_tone
gosub kill_time
running = false%

ENDIF
return

'*
'* won't_work
'* description: With some errors it is best to put the unit
'* to sleep, encourage the user to fix the problem, then
'* restart the application.
'*

won't_work:
cls
print " Press a key to"
print " restart ";
'gosub kill_time
sleep 10000
end
goto beginning

return

234 Appendix C Sample BASIC Programs

'*
'* evt_nomodule
'* description: This event is set when the system starts
'* and the monitor determines that there is no response
'* from a memory card module. Since this application is
'* designed to run with a memory card module, it should
'* not be allowed to run when this event is encountered.
'*

evt_nomodule:
cls
locate 0,0
print " No card module"
print " detected ";
gosub card_error_tone

'A -2 error is set by the system at start up
'if it determines there is no memory card module present.

'n_times% = 3
'gosub kill_time
sleep 5000
end

return

'*
'* evt_nocard
'* description: This event is set when the system starts
'* and the monitor determines that there is no memory card
'* inserted. Since this application is designed to run with
'* a memory card, it should not be allowed to run when this
'* event is encountered. It calls a sleep routine to allow
'* the user to insert a card and restart the application.
'*

evt_nocard:
cls

locate 0,0
print " No card "
print " inserted! ";
gosub card_error_tone
'gosub kill_time
sleep 2000

'After waking up from sleep, the system determined that
'there was no card inserted and set a global flag to
'indicate no card. The system must wake up from sleep with a
'memory card inserted to clear this flag.

cls
locate 0,0
print "Insert card then"
print " press a key";
sleep 2000
sleep 10

return

Appendix C Sample BASIC Programs 235

'*
'* evt_badcard
'* description: This event occurs when the system cannot
'* recognize the card or the card won't boot. If the card
'* isn't formatted, then the system sets a global flag to
'* indicate card not recognized. A partially formatted card
'* may not give the system any problem until the
'* application attempts to send it a command. Then this
'* routine may be called because of an error 05 indicating
'* that the card software system did not boot.
'*

evt_badcard:
gosub card_error_tone
IF error5% THEN

n_times% = 1
cls
locate 0,0
print " Card system "
print " error! ";
'gosub kill_time
sleep 2000
cls
locate 0,0
print " Exiting to OS "
print " ";
'gosub kill_time
sleep 2000
running% = false%

ELSE
cls
locate 0,0
print " Card not "
print " recognized ";
'sleep 1
'gosub kill_time
sleep 2000
cls
locate 0,0
print " Reformat card "
print " then retry ";
'sleep 1
'gosub kill_time
sleep 2000
cls
locate 0,0
print " running "
print " application ";
'gosub kill_time
sleep 3000
'sleep 1
running% = false%

ENDIF
return

236 Appendix C Sample BASIC Programs

'*
'* evt_card_interrupted
'* description: Since the sleep routine saves the latest
'* status from the memory card software system, it can then
'* update the card on the next cardcmd issued after waking
'* from sleep. If there is no valid status available,
'* it indicates that an event (like a power failure)
'* interrupted the process. In either case, the application
'* is automatically restarted. This routine notifies user.
'*

evt_card_interrupted:
cls
locate 0,0
print " Card update "
print " interrupted ";
n_times% = 1
gosub kill_time
cls
locate 0,0
print " Application "
print " restarted ";
n_times% = 2
goto beginning

return

'*
'* evt_cardID
'* description: Since the last time the OS ran, the card ID
'* has changed. The OS automatically restarts the
'* application and sets this event. This routine notifies
'* user.
'*

evt_cardID:

cls
locate 0,0
print "Card ID changed "
print " ";
n_times% = 1
gosub kill_time
cls
locate 0,0
print " Application "
print " restarted ";
n_times% = 1
gosub kill_time
cls

return

Index 237

Index

A
A (add record to memory card file)

CARDCMD statement command,
34, 39

ABS function, 26
absolute value function, 26
add new record to memory card file,

34, 39
add record to memory card file (A)

CARDCMD statement command,
34, 39

allocating storage space, 78–79
alphabetic characters, 3
ampersand (&) hexadecimal notation,

37, 38, 40
arithmetic operation, 19
arithmetic operators, 15
array, 12, 13, 78–79

dimension, 13
elements, 13
memory required, 13
record, 13
variable, 10, 12, 13
variable type, 13

ASC function, 27
ASCII code, 22, 27, 63–65
ASCII strings, 37
assign variable, 120–21
available RAM, 84–85

B
backspace, 38
BASIC character set, 3
BASIC reserved words, 11, 193
BASIC statement, 5
battery voltage, 84–85
BEEP statement, 28
beeper, 28
BIN function, 29–31
bitwise comparisons, 21
bitwise complement, 20
bitwise conjunction, 20
bitwise disjunction, 20

bitwise operators, 15, 20, 21
AND, 20, 21
NOT, 20, 21
OR, 20, 21

boot file (B), 36, 52, 54
branch to specified line, 97–98
branch to subroutine, 139–40
branching, conditional, 102–4

C
C (list card info) CARDCMD

statement command, 34, 40–43
calculate CRC (Q) CARDCMD

statement command, 35, 54
calculate CRC of memory card file, 35,

54
card ID, 51, 52
CARDCMD statement, 32–57

commands
A (add record to memory card

file) command, 34, 39
C (list card info) command, 34,

40–43
D (delete memory card file)

command, 34, 44
F (search for record with key

field) command, 35, 45, 46
H (delete record from memory

card file) command, 35, 45,
46

K &1092 (remove deleted files)
command, 35, 47

M (move pointer) command, 35,
48–50, 55

N (format card) command, 35,
51, 52

O (open memory card file)
command, 35, 52–53

Q (calculate CRC) command, 35,
54

S (search for record) command,
35, 55

V (version number) command,
35, 56

Y (repeat) command, 35, 57

238 Index

Z (sleep) command, 35, 57
global errors, 34

CARDSTATUS function, 33, 58–62
carriage return, 37, 38
case sensitive, 11
character set, 3

alphabetic character, 3
numeric character, 3
special character, 3

characters
programmable display, 152

CHR$ function, 63–65
close cross-reference file, 66
close data file, 66
CLOSE statement, 66
CLS statement, 67
Codabar, 143

transmit start and stop character,
151

Code 128, 144
Code 3 of 9, 143

require checksum, 144
transmit checksum, 145

Code I 2of5
require checksum, 145
transmit checksum, 146

COMMCLOSE statement, 68
COMMINPUT statement, 69–70
COMMOPEN statement, 71
COMMPRINT statement, 72
comparison operators, 15, 19

equality, 19
greater than, 19
greater than or equal to, 19
inequality, 19
less than, 19
less than or equal to, 19

compiler program, 191, 192
DOS, 191, 192
Macintosh, 191, 192
Videx BASIC, 191, 192
Vxbasic.exe, 191, 192
Vxbasicw.exe, 191
Windows, 191

concatenation, 22
CONST statement, 73–75
constant name, 73
constant value, 10, 73–75

constants, 9, 74
literal, 9
symbolic, 10

convert hexadecimal digits, 29
convert integer to hexadecimal, 99–101
CRC checked, 37
cross-reference file, 36

close file, 66
field, 129
file type, 36
number of records, 123
open file, 141
search file, 132

D
D (delete memory card file)

CARDCMD statement command,
34, 44

data collector events, 109–13
data file, 36, 50

close file, 66
end of file, 86
file type, 36
length of file, 123, 126, 128
move pointer, 50
open file, 141
print, 157
read file, 107
return current file position, 162–63,

165
set position, 164

data types, 7
elementary, 7
numeric data, 7
string data, 7

DATE$ function, 76–77
declaration statement, 78–79
delete memory card file, 34, 44
delete memory card file (D)

CARDCMD statement command,
34, 44

delete record from memory card file,
35, 45, 46

delete record from memory card file
(H) CARDCMD statement
command, 35, 45, 46

determine card ID, 51, 52

Index 239

determine memory card ID, 35
DIM statement, 13, 78–79
dimension array, 13
display, 67
display characters (programmable), 152
DMS (Data Management System), 38,

52, 56
DO...LOOP statement, 80–82
DuraTrax

available RAM, 84–85
battery voltage, 84–85
ID, 84–85
system version, 84–85

E
EAN, 148–50

allow supplement, 149
ignore supplement, 149
require supplement, 149
supplement, 150
transmit check character, 148

elementary data types, 7
numeric, 7
numeric data, 7

integer, 7
string data, 7

enable inkspread correction, 151
END statement, 83
end-of-file condition, 86–87
ENVIRON$ function, 84–85
environment options, 142, 143–54

return status, 142
set, 143–54

environment, hardware information,
84–85

EOF function, 86–87
ERR function, 88
escape character, 38
executable statement, 5
execute loop, 189–90
EXIT DO statement, 90
EXIT FOR statement, 89
exit loop, 89–90
EXIT statement, 89–90
EXIT WHILE statement, 89
expression, 15

numeric constant, 15

string constant, 15
variable, 15

F
F (search for record with key field)

CARDCMD statement command,
35, 45, 46

file management report, 34, 40–43
file types, 36
first-character timeout, 69
FOR...NEXT statement, 91–93

FOR statement, 91–93
FOR…NEXT loop, 91–93

nested loops, 93
NEXT statement, 91–93

format card (N) CARDCMD statement
command, 35, 51, 52

format memory card, 35, 51

G
GOSUB...RETURN statement, 94–96

GOSUB statement, 94–96
RETURN statement, 94–96

GOTO statement, 97–98

H
H (delete record from memory card

file) CARDCMD statement
command, 35, 45, 46

hardware environment information,
84–85

hash table, 195
HEX$ function, 99–101
hexadecimal, 37, 40, 99–101

I
iButtons. See Touch Memory buttons
ID, 84–85
identification file (D), 52
identifier, 84–85
IF statement, 104
IF...ELSEIF..ELSE..ENDIF

statement, 102–4

240 Index

IF...THEN statement, 102–4
inclusive “or”, 20
indexed file (I/H), 38, 45, 52, 55, 196
INKEY$ function, 105–6
INPUT$ function, 107–8
INPUTEVT statement, 109–13
INSTR function, 114–15
integer, 7
integer numbers, 8
integer numeric constants, 9
integers, 8

negative, 8
intercharacter timeout, 69
Interleaved 2 of 5, 143

K
K &1092 (remove deleted files)

CARDCMD statement command,
35, 47

key
scan, 105
scroll down, 105
scroll up, 105

key character, 37
keyboard character, 105–6
keypad entry, 109

L
label, 4
LaserLite

available RAM, 84–85
battery voltage, 84–85
ID, 84–85
system version, 84–85

LaserLite Mx, 195, 196
available RAM, 84–85
battery voltage, 84–85
ID, 84–85
memory card

calculate CRC of file, 54
capabilities, 36
delete record from file, 45, 46
determine card ID, 51
file types

boot file (B), 36
identification file (D), 36

indexed file (I/H), 36
sequential file (S), 36

format card, 51
move pointer, 48–50
open file, 52–53
read program version, 56
remove deleted files, 47
repeat command, 57
search for record, 55
search for record with key field,

45
sleep command, 57

system version, 84–85
LaserLite Pro

available RAM, 84–85
battery voltage, 84–85
ID, 84–85
system version, 84–85

LCASE$ function, 116
LEFT$ function, 117–18
LEN function, 119
LET statement, 120–21
line identifiers, 4
line label, 4
list card info (C) CARDCMD

statement command, 34, 40–43
list memory card file management

report, 34, 40–43
list memory card status information,

34, 40–43
literal constants, 9

numeric, 9
string, 9

LOCATE statement, 122
LOF function, 123–25
LOF statement, 126–27
LOFH function, 128
LOOK$ function, 129–31
LOOKUP function, 132–33
loop, 89, 91–93, 189–90
loops, 93

nested, 93
lowercase, 116
LTRIM$ function, 134–35

Index 241

M
M (move pointer) CARDCMD

statement command, 35, 48–50, 55
memory, 14, 84–85
memory card

add new record to file, 34, 35, 39
boot file (B), 36
calculate CRC of file, 54
delete file, 34, 35, 44
delete record from file, 35, 45, 46
determine card ID, 35, 51, 52
file management report, 34, 35, 40–

43
file types, 36
format card, 35, 51
identification file (D), 36, 52
indexed file, 45, 53
indexed file (I/H), 36, 45, 52, 55
move pointer, 48–50
move pointer in file, 35
open file, 35, 52–53, 52–53
perform search in file, 35
program version, 56
read program version, 35
remove deleted files, 35, 47
repeat last status byte or data, 35
search for record, 55
search for record in file, 35
sequential file (S), 36
sleep command, 57
status information, 34, 35, 40–43

MID$ function, 136–37
MID$ statement, 138
MOD modulus operator, 18
modulo arithmetic, 18
modulus, 52, 53, 195
move pointer (M) CARDCMD

statement command, 35, 48–50, 55
move pointer in memory card file, 35,

48–50, 55

N
N (format card) CARDCMD statement

command, 35, 51, 52
name variable, 78–79
negative integers, 8

nested loops, 93
nonexecutable statement, 5
null character, 7
numeric characters, 3
numeric constants, 9

integer, 9
numeric data, 7

integer, 7
numeric variable, 10

O
O (open memory card file)

CARDCMD statement command,
35, 52–53

ON…GOSUB statement, 139–40
ON…GOTO statement, 139–40
open file, 141–42
open memory card file, 35, 52
open memory card file (O)

CARDCMD statement command,
35, 52–53

open memory card ID file, 52–53
OPEN statement, 141–42
operating system version, 84–85
operations

order of, 16
operators, 15

arithmetic, 15
functional, 15
logical, 15
relational, 15
string, 15

OPTION function, 142
OPTION statement, 143–54
options, 142, 143–54

Codabar, 143
transmit start and stop character,

151
Code 128, 144
Code 3 of 9, 143

require checksum, 144
transmit checksum, 145

Code I 2of5
require checksum, 145
transmit checksum, 146

EAN, 148–50
allow supplement, 149

242 Index

ignore supplement, 149
require supplement, 149
supplement, 150
transmit check character, 148

enable inkspread correction, 151
expand UPC-E to UPC-A, 146
Interleaved 2 of 5, 143
longest bar code accepted, 152
minimum quiet zone, 151
report UPC as EAN, 148
return status, 142
set, 143–54
shortest bar code accepted, 152
UPC, 146–50

allow supplement, 149
ignore supplement, 149
require supplement, 149
supplement, 150
transmit check character, 146
transmit country code, 147
transmit number system

character, 147
UPC/EAN, 143

order of operations, 16

P
PATTERN function, 155–56
pause program, 169–70
perform a loop, 91–93
perform search in memory card file, 35,

55
print data, 157–58
PRINT statement, 157–58
program line, 4
program remarks, 159
program version, 35
programmable display characters, 152

Q
Q (calculate CRC) CARDCMD

statement command, 35, 54

R
read button, 180–84

read memory card program version, 35,
56

REM statement, 5, 159
remove deleted files (K &1092)

CARDCMD statement command,
35, 47

remove deleted files from memory
card, 35, 47

repeat (Y) CARDCMD statement
command, 35, 57

repeat a block of statements, 80–82
repeat last status byte or data, 35, 57
reserved words, 11
return a substring, 136–37
return current file position, 162–63,

165–66
return current time, 175–77
return data from cross-reference file,

129–31
return error condition, 88
return length of a file, 128
return length of file, 123–25
return numeric value, 187–88
return status of environment option,

142
return string in uppercase, 186
return string of characters, 107–8
return string without leading spaces,

134–35
return token from data file, 178–79
RIGHT$ function, 160
RTRIM$ function, 161

S
S (search for record) CARDCMD

statement command, 35, 55
scan key, 105
scanpad entry, 109
scroll down key, 105
scroll up key, 105
search cross-reference file, 132–33
search for record (S) CARDCMD

statement command, 35, 55
search for record in memory card file,

35, 45

Index 243

search for record with key field (F)
CARDCMD statement command,
35, 45, 46

search for record with key field in
memory card file, 35

SEEK function, 162–63
SEEK statement, 164
SEEKH function, 165–66
send command to memory card, 32
sequential file (S), 38, 52
serial port, 68, 69, 71, 72
set environment option, 143–54
set file size, 126–27
set LOOK pointer, 132–33
SGN function, 167–68
simple variable, 10, 12

declaring, 12
numeric, 12
string, 12

sleep (Z) CARDCMD statement
command, 35, 57

sleep cycle, 110
sleep mode for memory card, 35, 57
SLEEP statement, 169–70
sound beeper, 28
sound speaker, 171–72
SOUND statement, 171–72
special characters, 3
status code, 58
status information, 34, 40–43, 84–85
status report, 40, 42
storage space

allocating, 78–79
STR$ function, 173
string, 10, 119, 136, 138, 186
string comparison, 19, 22, 23
string constant, 9
string data, 7
string expression, 22, 23
string matches, 155–56
string operators, 15, 22

concatenation, 22
string comparison, 22

string variable, 138
subroutine, 94–96
subscript

maximum, 13
SWAP statement, 174

symbolic constants, 10

T
TIME$ function, 175–77
TimeWand II style pattern, 155, 156
TimeWand II wild cards, 155
TOKEN$ function, 178–79
Touch Memory buttons, 180–84
TOUCH statement, 180–84
two’s complement values, 8
type-declaration suffix, 12

U
UCASE$ function, 186
unit’s available RAM, 84–85
unit’s battery voltage, 84–85
unit’s ID, 84–85
unit’s system version, 84–85
UPC, 146–50

allow supplement, 149
country code, 147
expand UPC-E to UPC-A, 146
ignore supplement, 149
report as EAN, 148
require supplement, 149
supplement, 150
transmit check character, 146
transmit country code, 147
transmit number system character,

147
UPC/EAN, 143
uppercase, 186

V
V (version number) CARDCMD

statement command, 35, 56
VAL function, 187–88
variable, 10–13

array, 10, 13
assignments, 10
name, 11
naming, 78–79
numeric, 10
simple, 10

variable name, 11

244 Index

variable types, 12
array, 12
simple, 12

version number (V) CARDCMD
statement command, 35, 56

voltage, 84–85
Vxbasic.dll, 191
Vxbasic.h, 191
Vxbasicw.exe, 191

W
WHILE…WEND statement, 189–90

write data to button, 180–84

Y
Y (repeat) CARDCMD statement

command, 35, 57

Z
Z (sleep) CARDCMD statement

command, 35, 57

