

DuraTrax® /LaserLite®

LaserLite Pro/LaserLite Mx

Developer’s Reference

Copyright © 1997-1999 by Videx, Inc.

All Rights Reserved
GCO# 930 MN-DTL-06

Blank Page

i

Notice: Videx, Inc. reserves the right to make improvements or changes in the
product described in this manual at any time without notice.

Disclaimer of All Warranties and Liability: Videx, Inc. makes no warranties,
either expressed or implied except as explicitly set forth in the Limited Warranty
below, with respect to this manual nor with respect to the product described in
this manual, its quality, performance, merchantability or fitness for any purpose.
Videx, Inc. software is sold or licensed “as is.” The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Videx, Inc., its distributors, or its retailers)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Videx, Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any defect or
the possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Limited Warranty: Videx, Inc. warrants this product to be free from defects in
material and workmanship for a period of one (1) year from the date of original
purchase. Videx, Inc. agrees to repair or, at our option, replace any defective
unit without charge. Videx, Inc. assumes no responsibility for any special or
consequential damages. No other warranty, either expressed or implied, is
authorized by Videx, Inc. Some states do not allow the exclusion or limitation of
implied warranties or liability for incidental or consequential damages, so the
above limitation or exclusion may not apply to you.

Copyright Notice: This manual is copyrighted. All rights are reserved. This
document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form
without prior consent, in writing, from Videx, Inc.

Copyright © 1997-1999 by Videx, Inc.
1105 N.E. Circle Blvd., Corvallis, Oregon 97330 USA
Phone: (541) 758-0521 Fax: (541) 752-5285
www.videx.com • sales@videx.com • support@videx.com

Videx, DuraTrax, and LaserLite are registered trademarks of Videx, Inc.,
Application Builder and BarCode Labeler are trademarks of Videx, Inc.
All other trademarks are properties of their respective owners.

ii

Federal Communications Commission Statement: This equipment is a Class
A computing device under the U.S. FCC rules and this warning is required.

Warning: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. It has been tested and found
to comply with the limits for a Class A computing device pursuant to Subpart J of
Part 15 of FCC rules, which are designed to provide reasonable protection
against such interference when operated in a commercial environment.
Operation of this equipment in a residential area is likely to cause interference in
which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

If this equipment is operated from the same electrical wall circuit as other pieces
of equipment and erratic operation of the unit occurs, it may be necessary to
shut off other equipment or power the unit from a dedicated electrical circuit.

If this equipment has an FCC ID number affixed to the equipment, then the unit
meets the limits for a U.S. Federal Communications Commission Class B
computing device and the following information applies.

FCC Notice: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instruction manual,
may cause interference to radio and television reception. It has been type tested
and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC rules, which
are designed to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause interference to
radio or television reception, which can be determined by disconnecting and
reconnecting the equipment, the user is encouraged to try to correct the
interference by one or more of the following measures.
Reorient the receiving antenna.
Relocate the computer with respect to the receiver.
Move the computer away from the receiver.
Plug the computer into a different outlet so that computer and receiver are on
different branch circuits.

If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may find the
following booklet prepared by the Federal Communications Commission helpful:
“How to Identify and Resolve Radio-TV Interference Problems.”
This booklet is available from the U.S. Government Printing Office, Washington,
DC 20402, Stock No. 004-000-00345-4.

iii

Table of Contents
INTRODUCTION ..1

CHAPTER 1 COMMUNICATIONS PROGRAMS3
COMMUNICATIONS PROGRAMS OVERVIEW... 4
COMMUNICATIONS PROGRAMS FOR WINDOWS, DOS, AND MACINTOSH 10

Download for DOS .. 10
Vxcom for Windows ... 11

Download and Vxcom Parameters ...13
Windows DLL for Vxcom ...20

Vxcomm.dll (version 2.10) ...20
Videx Download for Macintosh ... 24

Videx Download Interface (Macintosh only)...24
Communications Program Commands File... 25

Commands ...26
Looping Commands ..28

Assigning IDs ...29
Changing a Data Collector’s ID with a Windows Computer29
Changing a Data Collector’s ID with a DOS Computer32
Changing a Data Collector’s ID with a Macintosh Computer35

Transferring Data from Multiple Data Collectors...................................37

CHAPTER 2 MONITOR PROGRAM..43
MONITOR PROGRAM OVERVIEW... 44

Resetting the Data Collector to Monitor Mode ... 44
Monitor Program Signatures... 45
Monitor Commands ... 45

System Block Diagram...48
Dumping Memory to Recover Data ... 51
Special Notes on LaserLite Pro Monitor 1.11 ... 53

Loading from Flash Memory..53
Startup Model for VX1 Monitor 1.33 and 1.34.. 54

iv

CHAPTER 3 OPERATING SYSTEM SOFTWARE.................................59
OPERATING SYSTEM SOFTWARE OVERVIEW... 60

Operating System Command Line ... 61
Operating System Commands ..62

Battery...62
Set ID ..62
Default Application* ...62
Load from Flash (OS versions 1.22 or later, LaserLite Pro and LaserLite Mx
only) ..63
Go..63
Unlock...63
Lock ..64
Message...64
Pass to Memory Card (LaserLite Mx only)..64
Quit Operating System ..64
Receive..64
Send...65
Time ..65
Reset Memory Card...65
Listen for Response from Memory Card ...65
Clear Data..65

Default.s Application ...66
Default Application Variables...66
Default Application Sounds ..69

LaserLite Mx MX-DEMO Application..70
MX-DEMO Application Variables ..70

CHAPTER 4 APPLICATION BUILDER SOURCE TEMPLATE75
APPLICATION BUILDER BASIC SOURCE CODE ... 76
GENERATE BASIC SOURCE CODE FOR APPLICATION 76
CODE GENERATION DIRECTIVES... 80
DESCRIBE.SRC .. 89

Describe.src Variables... 89
Describe.src Subroutines ... 95
Describe.src Sounds .. 99
Plug-ins.. 100

TIMEWAND.SRC .. 101

v

CHAPTER 5 LASERLITE MX MEMORY CARD DATA
MANAGEMENT..103

MEMORY CARD CAPABILITIES .. 104
LASERLITE MX MEMORY CARD COMMAND SET .. 105

Operating System P Command–Pass to Memory Card 105
TRANSFERRING FILES BETWEEN THE MEMORY CARD AND THE COMPUTER130

Commands File.. 131
Commands File Commands ...132

Memory Card Commands for the Commands File133
R Command..133
S Command ..134
D Command ...134
K Command ...134
F Command ..135

File Types ..136
Commands File Examples ...137

Notes on Communicating with a Memory Card ..139
About the Modulus..141
Common Precautions for Using a Memory Card143
Protecting the Data in the Memory Card...144

BOOTING FROM THE MEMORY CARD.. 145
SENDING CROSS-REFERENCE FILES TO THE MEMORY CARD 147
TRANSFERRING DATA FROM THE MEMORY CARD 148
CREATING A CROSS-REFERENCE FILE FOR THE MEMORY CARD 149
OPENING A FILE ON THE MEMORY CARD.. 150
DATA AND CROSS-REFERENCE FILE HANDLING ON THE MEMORY CARD ... 151
CHANGING RECORDS IN MEMORY CARD FILES... 153
LASERLITE MX ERROR HANDLING STRATEGIES ... 156

Operating System Error Handling... 157
CARDCMD Statement Errors.. 159
CARDSTATUS Function Errors .. 164

CHAPTER 6 DURATRAX, LASERLITE, LASERLITE PRO AND
LASERLITE MX DATA FILES...169

DEFAULT DATA FILE... 170
SCAN.S DATA FILE .. 171

The Header .. 172
The Data .. 173
The Tailer .. 174

TIMEWAND II-STYLE DATA FILE (TIMEWAND.SRC) 175
The Header .. 177
The Data .. 178
The Tailer .. 179

Origin of Data ..180

CHAPTER 7 CROSS-REFERENCE FILE CONVERT PROGRAMS .181

vi

CROSS-REFERENCE FILE DISCUSSION ... 182
Vxcrfw.exe.. 183
Vxcrf.exe .. 184
Cross-Reference File (*.CRF) Notes ... 188

CHAPTER 8 THEORY OF OPERATION...189
THEORY OF OPERATION OVERVIEW.. 190

Power Up Sequence... 190
Battery Monitoring .. 191
Power Down Sequence .. 191
Boot Loader (Monitor Program) ... 191
Communications .. 191
Memory Access .. 192
Times.. 192
Currents ... 192
Voltages ... 193
Environmental Testing... 193
Definition of Terms.. 193
Circuit Description .. 194

Main Board ..194
DuraTrax Scan Board...196
LaserLite, LaserLite Pro, and LaserLite Mx Scan Board196
Base Stations..197

APPENDIX A MODEM COMMUNICATIONS HOOK-UP
CONFIGURATIONS AND CABLE PIN OUTS199

APPENDIX B LOW-LEVEL LASERLITE MX MEMORY CARD
FORMATTING SEQUENCES ...205

FORMATTING AN UNFORMATTED MEMORY CARD...................................... 206
FORMATTING PREVIOUSLY FORMATTED MEMORY CARDS 208

APPENDIX C ERROR CODES...209
COMMUNICATION ERRORS.. 210
MEMORY CARD ERRORS... 213

INDEX ...215

Introduction 1

Introduction

This manual provides additional information for the DuraTrax,
LaserLite, LaserLite Pro, and LaserLite Mx software developer.
This manual consists of eight chapters and three appendixes.

Chapter 1 contains information on the communications programs:
Vxcom, Download, and Videx Download. These programs provide
communication between the data collector and the computer.

Chapter 2 contains information on the monitor program that is the boot
program that resides in the ROM of the DuraTrax, LaserLite, LaserLite
Pro, and LaserLite Mx.

Chapter 3 contains information on the operating system files for the
DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx. The operating
system must be installed on the data collector before it can collect data.

Chapter 4 contains information on the Application Builder Source
Template (which generates source code in BASIC), including
information on plug-ins and exporting the source file.

Chapter 5 contains information on the LaserLite Mx memory card and
how to manage files on the memory card.

Chapter 6 contains information on DuraTrax, LaserLite, LaserLite Pro,
and LaserLite Mx data files. These are the files of collected data that are
transferred to the computer.

Chapter 7 contains information on the cross-reference file convert
programs: Vxcrfw.exe and Vxcrf.exe. These programs convert a text file
into a cross-reference file that can be used by a DuraTrax, LaserLite,
LaserLite Pro, or a LaserLite Mx without a memory card.

Chapter 8 discusses the theory of operation for the DuraTrax, LaserLite,
LaserLite Pro, and LaserLite Mx data collectors.

Appendix A contains information on connecting the Base Station to a
modem, Appendix B contains information on formatting LaserLite Mx
memory cards, and Appendix C contains lists of error codes.

2 Introduction

Chapter 1 Communications Programs 3

Chapter 1

Communications Programs

This chapter contains information on:

• = The communications programs for the DuraTrax, LaserLite,

LaserLite Pro, and LaserLite Mx.

• = Vxcom for Windows communications program for DuraTrax,
LaserLite, LaserLite Pro, and LaserLite Mx.

• = Download for DOS communications program for DuraTrax,
LaserLite, LaserLite Pro, and LaserLite Mx.

• = Videx Download for Macintosh communications program for
DuraTrax, LaserLite, and LaserLite Pro.

• = Transferring files between the data collector and the computer.

4 Chapter 1 Communications Programs

Communications Programs Overview

The communications programs, Vxcom (Windows), Download (DOS),
and Videx Download (Macintosh), provide communication between the
data collectors and a computer. These programs allow you to transfer
files between the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
data collectors and the computer. (Note: The LaserLite Mx is not
Macintosh compatible.)

The communications programs interact with several programs or files
used by the DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
system; including the monitor program, operating system, commands
file, application and cross-reference files, and data files. The following
two diagrams show how these components interact for the DuraTrax,
LaserLite, LaserLite Pro and the LaserLite Mx.

Chapter 1 Communications Programs 5

The following diagram illustrates how these components interact for the
DuraTrax, LaserLite, and LaserLite Pro.

Monitor Program

· Controls loading the flash
memory in the LaserLite Pro
or LaserLite Mx.
· Provides direct access to
system memory.

Operating System

Combined Application
Code and

Cross-Reference Files

Data File

Data Collector
Memory

Operating System

· Controls unit's basic
functions including storing
data, processing key and scan
events, and interpreting
application code.

Application Program

· Controls prompt and scan
sequence.
· Enables validation of data.
· Default: DEFAULT.S.

Data File

· Text file containing
transferred data.
· Default: DATA.TXT

Unit's ID

· Alphanumeric ID (up to
10 characters).
· Default: 0000000000
· Set in the commands file.
· Multiple unit installations
require each unit to have
a unique ID other than
0000000000.

Cross-Reference File(s)

· Lookup tables to validate
data or other programming
needs.

Communications
Programs

VxComxxx.EXE for Windows
Download.EXE for DOS

Videx Downloader for Mac

· Transfers data from unit to
computer via YModem and
writes the data file to disk.

· Sets unit's ID from
information stored in file.

· Combines application
code with indexed cross-
reference file to create
loadable application
module, COMBINED.APP.

· Loads operating system
into RAM of DuraTrax,
LaserLite, LaserLite Pro,
and LaserLite Mx.
· Combines operating
system with application,
cross-reference (if LaserLite
Pro), and ID to create
FLASH.IMG file to load into
flash memory on the LaserLite
Pro or LaserLite Mx.

· Actions may be controlled
by instructions stored in a
"commands" (text) file.

Commands File

List of instructions to the
communications program
that direct its actions.

Figure 1-1 Communications Programs and DuraTrax, LaserLite, and
LaserLite Pro Interactions with Programs and Files

6 Chapter 1 Communications Programs

The following diagram illustrates how these components interact for the
LaserLite Mx.

Monitor Program

· Controls loading the flash
memory in the LaserLite Mx.
· Determines whether to boot
from the memory card.
· Provides direct access to
system memory.

Operating System

Application Code

Data Collector Memory

Operating System

· Controls reader's basic
functions including storing data,
processing key and scan
events, and interpreting
application code.

Application Program

· Controls prompt and scan
sequence.
· Enables validation of data.
· Default: MX-DEMO.S

Data File

· Text file containing
downloaded data.
· Default: DATA.TXT

Unit's ID

· Alphanumeric ID (up to 10
characters).
· Default: 0000000000
· Set in the commands file.
· Multiple reader installations
requires each unit to have a
unique ID other than
0000000000.

Cross-Reference File(s)

· Lookup tables for data
validation or other programming
needs.

Communications
Programs

VxComxxx.EXE for Windows
Download.EXE for DOS

· Transfers data from reader's
memory card to the computer
via pass through commands to
the memory card processor and
writes the data file to disk.

· Sets unit ID from information
stored in file.

· Creates a loadable application
module, COMBINED.APP.

· Loads operating system into
RAM of LaserLite Mx.
· Combines operating system
with application and ID to create
FLASH.IMG file to load into
128K flash memory on the
LaserLite Mx.

· Actions may be controlled by
instructions stored in a
"commands" (text) file.

Commands File

· List of instructions to the
communications program that
direct its actions.

SmartMedia Memory
Card (SSFDC)

· Stores and manages up to 60
files and 5 file types for cross-
reference and data collection.
· Communicates to the PC via
commands and responses
passed through the OS.

Figure 1-2 Communications Programs and LaserLite Mx Interactions
with Programs and Files

Chapter 1 Communications Programs 7

The following paragraphs summarize the purpose of each program and
file.

Monitor Program: The monitor program is the boot program that
resides in processor memory. It is the lowest level of software in the
DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx system that
presents an RS-232 interface. It provides direct access to system memory
and controls loading an initial system executable program. The monitor
program is described in Chapter 2.

Operating System: The operating system (OS) controls the data
collector’s basic functions including storing data, processing keypresses
and scan events, and interpreting application code. The operating system
software filename always ends with a .OS extension. The operating
system software is described in Chapter 3.

Commands File: A commands file is a list of instructions to the
communications program. You may create a commands file from a text
editor or generate it from a custom application program. Commands file
details are discussed on pages 25–42.

ID: By default, the ID of each data collector is 0000000000. You may
assign a unique name or number (up to 10 characters) to a data collector.
The ID is stored by the operating system. A unique ID enables the
communications program to isolate and control a single data collector
from others connected to the same serial port on a computer, thus
enabling communications with multiple data collectors. The ID is
created and sent to the computer via the commands file.

Application Program: An application program controls the data
collection process, including prompting, validation of data, and the data
file format. An application program is created with Application Builder,
compiled from the generated BASIC source code, then stored on the
computer as a *.S file. Applications compiled for DuraTrax, LaserLite,
and LaserLite Pros, but loaded into a LaserLite Mx along with a
LaserLite Pro operating system (*.OS), will cause the LaserLite Mx to
behave exactly like a LaserLite Pro. (Note: The asterisk * represents the
application filename.) See the Application Builder Manual for more
information on Application Builder.

8 Chapter 1 Communications Programs

Cross-reference File: A cross-reference file is a lookup table used by
an application for data validation, configuration, or other needs. An
application may refer to one or more cross-reference files. This manual
will refer to two types of cross-reference files: *.CRF cross-reference
files and text cross-reference files.

*.CRF cross reference files (DuraTrax, LaserLite & LaserLite Pro)
Cross-reference files for the DuraTrax, LaserLite, LaserLite Pro must
have a .CRF extension. They may be created using Application Builder
or by converting an existing cross-reference text file using either the
Vxcrf.exe or Vxcrfw.exe utility programs (refer to Chapter 7). Up to 31
cross-reference files of this type can be called from an application.
Vxcom or Download communications programs automatically merge
*.CRF cross-reference files with the application code prior to loading
into a DuraTrax, LaserLite, or LaserLite Pro so that the application can
access them during runtime.

Text cross-reference files (LaserLite Mx)
Cross-reference files intended for the LaserLite Mx memory card must
be text files with tab-delimited fields and no quotes. Vxcom or
Download, based on instructions in a commands file, send these files to
the LaserLite Mx one record at a time. The LaserLite Mx then indexes
each record it receives to a hash table to enable fast lookups on the key
field. The LaserLite Mx operating system also supports *.CRF files but
they must be merged and transferred with the application (*.S) file the
same as DuraTrax, LaserLite, and LaserLite Pro. Since the LaserLite Mx
data management system provides more comprehensive file handling
capabilities, this manual presumes that all cross-reference files for the
LaserLite Mx will be directed to its memory card.

Chapter 1 Communications Programs 9

Image File: (LaserLite Pro and LaserLite Mx only) An image file is an
exact copy of the merged operating system, application, unit ID, and any
*.CRF cross-reference files that reside in the RAM of the LaserLite Pro
and LaserLite Mx. An image file can be created by Vxcom or Download
and transferred to the 128K flash memory of the LaserLite Pro or
LaserLite Mx. Once the image file is in the flash memory, it serves as a
backup copy of the operating system and application should the copy in
RAM be lost or damaged. In that event, the contents of the flash memory
may then be copied to RAM. The image file can also serve as a system
boot file when it is loaded onto the LaserLite Mx memory card using the
MXFORMAT utility.

Vxcom and Download use the -f and -k arguments to create and control
the image file. The -k1 and -k2 arguments enable you to build the image
file from the applicable files listed on the command line and save it to
disk. See the -f and -k arguments on pages 15–16 for more information.

Data File: A data file is the collection of all data collected by the data
collector since the last data transfer. The communications program
extracts the collected data from the data collector and writes it to the
computer in the form of an ASCII text file. Data file structure and
options are described in Chapter 6 of this manual. The name of the data
file is defined by the application. Videx uses DATA.TXT as the default
data filename. The data filename can be changed by modifying the
application’s BASIC source code.

10 Chapter 1 Communications Programs

Communications Programs for Windows, DOS,
and Macintosh

The communications program for DOS is Download and the
communications program for Windows 95/98/NT is Vxcom; these two
programs can be used with a DuraTrax, LaserLite, LaserLite Pro, or a
LaserLite Mx.

The communications program for Macintosh is Videx Download; it can
be used with a DuraTrax, LaserLite, LaserLite Pro, or a LaserLite Mx
with a LaserLite Pro application and operating system. The LaserLite
Mx operating systems and applications are not Macintosh compatible.

The following sections describe the three communications programs.

Download for DOS

The communications program for DOS computers is Download.exe; it
can be used with a DuraTrax, LaserLite, and LaserLite Pro.
LaserLite Mx requires Download.exe version 2.0.0 or later.
Download.exe executes a series of commands from a commands file.

The syntax for the Download.exe command line is:

 DOWNLOAD [app.s] [REF.CRF] [sys.os] [cmd.txt] {arguments}

or

 DOWNLOAD [image.img] [cmd.txt] {arguments}

The parameters are listed on one program line and may be listed in any
order. The parameters and defaults are identical to the ones used in the
Vxcom program; they are described on pages 13–19.

Chapter 1 Communications Programs 11

Vxcom for Windows

The communications program for Windows 95/98/NT is Vxcom; it can
be used with a DuraTrax, LaserLite, and LaserLite Pro. LaserLite Mx
requires Vxcom version 2.00 or later.

The original Vxcom filename was Vxcomm.exe; newer versions of
Vxcom have names in the form Vxcomxxx.exe, where xxx corresponds
to the version number (for example, Vxcom200.exe). These files are
accompanied by a DLL with a name in the form Vxcomxxx.dll. Most
recently, Vxcomm.dll version 2.1 was created that provides the
enhancements in Vxcom200 and also supports the Application Builder
program.

If you have previously used the Application Builder software, you may
have used Vxcom to transfer the data file to the computer. Vxcom also
transfers files from the computer to the data collector.

The Run command is used from the Windows Start menu to pass
parameters to Vxcom. The parameters and defaults are listed on pages
13–19. Alternatively, you may start the Vxcom program by double-
clicking its icon or by dragging and dropping a combination of the
commands file, application file, CRF file, and operating system file
icons onto the Vxcom icon.

Vxcom displays a progress bar window (Figure 1-3) to report the status
of the file transfer.

Figure 1-3 Vxcom Progress Window

12 Chapter 1 Communications Programs

Vxcom executes a series of commands from a commands file. See the
Commands File section beginning on page 25 for more information on
the commands file.

The syntax for the Vxcom command line is:

Vxcomxxx [app.s] [REF.CRF] [sys.os] [cmd.txt] {arguments}

or

Vxcomxxx [image.img] [cmd.txt] {arguments}

The parameters are listed on one line and they may be listed in any
order. If the files listed on the command line are not in the same folder
as Vxcom, you must also include the file path.

Chapter 1 Communications Programs 13

Download and Vxcom Parameters

Following are descriptions of the parameters for Download and Vxcom:

app.s The compiled application program: either an application

created with Application Builder, with Videx BASIC, or the
default application Default.s. Triggered by the .S extension.
This parameter is optional. (Note: If an *.OS file is passed
as a parameter, but a *.S file is not listed, nor can the
Default.s file be located, then the file transfer process
terminates.) To avoid the error, the Default.s file must
reside in the same folder as the Vxcom or Download
communications programs.

REF.CRF This is the application program’s *.CRF cross-reference

files (if the application uses *.CRF files). Triggered by the
.CRF extension. If the application uses more than one cross-
reference file, the *.CRF filenames must be separated by a
space. This parameter is optional, but if the application
program uses *.CRF cross-reference files, they must be
listed for the application to perform properly.

*LaserLite Mx Memory Card Note: Text cross-reference files for the
LaserLite Mx memory card must be transferred to the memory card with
a commands file. See pages 25–42 for information on the commands file,
see Chapter 5 for information on using LaserLite Mx memory cards, and
see pages 137–138 and 147 for examples of transferring a cross-
reference file to a memory card.

14 Chapter 1 Communications Programs

sys.os The operating system software for the data collector.
Triggered by the .OS extension. This parameter is optional
unless you have reset the data collector to monitor mode.
(Note: The exact name of the operating system software will
change as new versions are released, but will always end
with a .OS extension. Each product’s operating system will
always begin with the same letters: Trax for DuraTrax, Lite
for the LaserLite; Pro for the LaserLite Pro; and Lmx for
the LaserLite Mx.)

image.img The image file is a combination of the operating system,

application program, and *.CRF cross-reference files that
can be loaded into the flash memory of the LaserLite Mx or
LaserLite Pro. Triggered by the .IMG extension. This
parameter can be used instead of, but not with the *.S,
*.CRF, and *.OS parameters. The image file is controlled
by the -f and -k arguments described on pages 15–16. (Only
available for versions 1.38 or later of Vxcom and
Download.)

cmd.txt The commands file is a text file containing commands to be

performed by the communications program. Triggered by
.TXT, .VDX, or no extension. (See the commands file
description and defaults on pages 25–42.) This parameter is
optional unless you are transferring files to or from the
LaserLite Mx memory card. (Note: This file can also change
a data collector’s ID.)

Chapter 1 Communications Programs 15

{arguments} include:

-dn Indicates IR device to use (0–1); n is the device number. Use 0
 for a Videx Base Station or if your computer has a built-in IR
 transceiver, and 1 for a JetEye. Default is 0. (Note: This
 argument’s configuration numbers changed with version 1.38.
 Prior versions used -d2 for a built-in IrDA transceiver.)

 0 - (default) Prepares Base Station or computer’s built-in IrDA
transceiver for communications with data collector.
(Note: DuraTrax, LaserLite, LaserLite Pro, and LaserLite
Mx support the IrDA physical layer only. Computers with
built-in IrDA transceivers must disable the link access
protocol and the link management layers before using
Vxcom or Download.)

 1 - For use with JetEye PC IR station; pulls DTR low.

-fn This argument is for LaserLite Pro and LaserLite Mx only, and

works only in conjunction with the -k argument. It indicates if
the image file (*.IMG) should be loaded into the flash memory
of the LaserLite Mx or LaserLite Pro; n is the option number (0–
1). Default is 0. (This argument is only available for versions
1.38 or later of Vxcom and Download.)

 0 - (default) Do not load to flash memory.

 1 - Load image file to flash memory.

16 Chapter 1 Communications Programs

-kn This argument works in conjunction with the -f argument.
Indicates if the image file (*.IMG file) is created, sent to the
data collector, and erased from the computer; or if the image file
is created, sent to the data collector, and a copy of the *.IMG
file is kept on the computer; or if the image file is created and
kept on the computer; n is the option number. Default is 0. (This
argument is only available for versions 1.38 or later of Vxcom
and Download.)

 0 - (default) Sends file (*.IMG) to data collector then erases
 file from computer.

 1 - Sends file to data collector and saves *.IMG file on
 computer.

 2 - Keeps file on computer; does not send file to data collector.

-pn Indicates serial port to use (1–4); n is the port number.
 You can use ports 1, 2, 3, or 4. Default is 1.

-qn This argument is only for Download.exe versions 1.38 and
 later. Indicates if the communications program displays its
 messages or operates in the background (0–1); n is the option
 number. Default is 0.

 0 - (default) Messages displayed on computer screen.

 1 - Quiet; no messages. Operates in background.

-sn This argument indicates if the communications result code and

unit ID are kept in the Status.txt file or not (0–2); n is the option
number. Default is 0. (This argument is only available for
versions 1.38 or later of Vxcom and Download.)

 0 - (default) Does not record status.

 1 - Writes status to file; overwrites current file.

 2 - Writes status to file; appends to current file.

 Note: No status message is written for an Unlock command
 timeout error. Pressing the <Escape> key will terminate the
 communications program.

Chapter 1 Communications Programs 17

The format of the Status.txt is as follows:

Line 1 – Name and version of calling program with the date and time
executed.
Line 2, 3, ... (up to the number of units contacted in session) – Unit’s ID
(if contacted), error number and description, or communication result,
date, and time.

Following is an example of a Status.txt file, followed by a table that
describes the status codes.

Status.txt File Example

Download v. 1.38 09/16/97 13:33:09
DURATRAX, 16001, I gave up while waiting for a character.
VXComm v. 1.38 09/16/97 13:47:42
0000000000 No data. 13:47:54
VXComm v. 1.38 09/16/97 13:48:00
DURATRAX Transferred to DATA.TXT 13:48:12
VXComm v. 1.38 09/19/97 11:58:41
, 18007, There was an error talking to a serial port.
Download v. 1.38 09/23/97 10:08:26
0000000000 Transferred to DATA.TXT 10:09:08
DURATRAX Transferred to DATA.TXT 10:09:23

Status.txt Codes

Code Description
16001 Gave up waiting for a character.
16002 Aborted transmission.
16003 Got out of sync with other party in transmission.
16004 Keep missing parts of packets; there may be too much noise on line.
16005 Received the start of the packet, but rest of packet is badly formed.
16006 Received a well formed packet, but the check digits were wrong.

May have noise on the line.
18000 Cannot open the serial port.
18001 Unknown command in the commands file.
18002 Error in communications.
18003 C and I commands in commands text file require identifiers.
18004 No such serial port.
18005 Error accessing a file.
18006 Not enough memory to continue.
18007 Error talking to the serial port.

18 Chapter 1 Communications Programs

Code Description
18008 One of the command line arguments in the commands file does not

make sense.
18009 Loops in the commands file are nested too deeply.
18010 The file size exceeds the device’s capacity.
18011 There is no application file to load with the OS.
18012 You must specify either an OS file or an image file to load into flash.
18013 Image files (*.IMG) can only be loaded into flash.
18014 The structure of a cross-reference file is corrupted.
21000 Operation successful.
21001 Unrecognized memory card. This version recognizes Toshiba’s

SSFDC 2, 4, and 8 MB memory cards.
21002 Unrecognized memory card.
21003 Syntax error.
21004 CRC of command did not match.
21005 Unknown command.
21006 Missing parameters for this command.
21007 Incorrect parameters for this command.
21008 Binary file.
21009 Incorrect file type.
21010 Too much data in the command.
21022 No ID file.
21023 No data.
21031 No such file exists.
21032 No file opened.
21033 Too many files (>60 files).
21034 The page has already been written to four times. (Note: Toshiba only

allows you to write to a page four times.)
21035 No such record exists.
21036 End of file.
21037 Beginning of file.
21038 Timeout occurred.
21039 Memory full.

Chapter 1 Communications Programs 19

Code Description
21040 Write/protect encountered.
21041 Record too large (>1024 bytes).
21042 Field too large (>255 bytes).
21043 Some of the physical functions are locked to avoid data corruption.

Try: N &0129 to unlock.
21051 File management error (control data was changed).
21052 Sequential file corrupted (by accidental power failure).
21053 Data corrupted.
21054 CRC of boot file did not match (program data may be corrupted).
21061 Memory card program failed (card may be worn out).
21062 Block erase failed (card may be worn out).
21063 Unknown memory card format.
21064,
21065

First block of memory is bad (broken card).

21066 Too many bad blocks (card may be damaged).
21067 Most of the reserved control blocks are bad (card worn out).
21068 The memory card has been erased more than 32,768 times (each K

&1092 or N &1092 counts as one erasing).

20 Chapter 1 Communications Programs

Windows DLL for Vxcom

Vxcomm.dll (version 2.10)

Vxcomm.exe calls a 32-bit dynamically linked library (DLL) with
functions that invoke the communications routines. This DLL is used by
Application Builder to transfer an application to the data collector, and
can also be used by developers who are integrating Videx data collectors
into their Windows application. The header file vxcomm.h documents
the C calling conventions. Vxcomm.dll has a standard export function
Vxcomm_vb. (Note: If you have an earlier version of Vxcomm.dll, visit
the Videx website at www.videx.com to obtain the latest version of
Vxcomm.dll.)

This is an example of the function declaration from Visual Basic 6.0:

Declare Function vxcomm_vb Lib "vxcomm.dll" _
 (ByVal owner As Integer, _
 ByVal cmd As String, _
 ByVal sys As String, _
 ByVal app As String, _
 ByVal crfs As String, _
 ByVal port As Integer, _
 ByVal config As Integer) _
 As Integer

This is an example of a call from a form:

Private Sub Command0_Click()

Dim x
x = vxcomm_vb(pNull, command_var, sys_var, app_var, _

crf_var, port_var, config_var)
MsgBox (x)

End Sub

Chapter 1 Communications Programs 21

The parameters are defined below:

Vxcomm_vb (
 HWND owner /*parent of progress window, if declared

as Null, progress window is parent of
top level window*/

 char const * cmd /*name of commands file or NULL*/
 char const * sys /*operating system filename or NULL*
 char const * app /*application filename or NULL*/
 char const * crfs /*comma delimited list of crf files*/
 long int port /*port number (1-4)*/
 long int config /*configuration, see below*/
);

The config parameter uses a bit-mapped scheme to pass a set of Boolean
parameters (communications options). Previous versions of Vxcomm.dll
used the config parameter to specify the serial mode to use, i.e., Videx
downloader or JetEye IR transmitter. This functionality is preserved for
backward compatibility. The communication options that are supported
by version 2.10 of Vxcomm.dll via the config parameter are defined in
the following table:

serial_type Add 0 to config for Videx downloader; add 1 to config for
JetEye IR transmitter; add 2 to config for standard serial.

flash Add 0 to config to load to RAM; add 16 to config to load to
flash.

save_temp Add 0 to config for do not save temporary files; add 32 to
config to save temporary files.

dont_load Add 0 to config to load files into data collector; add 64 to
config to not load files into data collector (effective only if
saving temporary files).

quiet Add 0 to config for not quiet; add 128 to config for quiet
mode. This option is only present for code compatibility and
has no effect on the execution of the function.

status Add 0 to config for no status file; add 256 to config to create
a status file.

stat_append Add 0 to config to overwrite status file; add 512 to config to
append to status file (effective only if creating a status file).

half_duplex Add 0 to config for full duplex mode; add 1024 to config for
half duplex mode.

22 Chapter 1 Communications Programs

If the save_temp option is enabled, the application or image file that is
created by Vxcomm.dll is preserved rather than erased. If an application
and cross-reference files are passed to Vxcomm.dll, the name of the file
that is created is combined.app. If an operating system, application and
cross-reference files are passed to Vxcomm.dll, the name of the created
file is flash.img. If loading to the flash memory on the LaserLite Pro or
the LaserLite Mx instead of to RAM, it is recommended that the
program determine whether the image file (flash.img) will fit into the
flash memory. The check_file_size function is provided to do this. The
declaration from Visual Basic 6.0 is:

Declare Function check_file_size Lib "vxcomm.dll" _
 (ByVal filename as String, _
 ByVal max_size as Long) _
 as Integer

where filename is the name of the file to be loaded to flash memory
(generally flash.img), and max_size is the maximum size (in bytes) of a
file which is allowed to be loaded to flash (generally 128K or 131072).
This function returns 0 if the size of filename is less than max_size;
otherwise it returns 18010 (file size exceeds the device’s capacity).

Chapter 1 Communications Programs 23

Pseudo-code for creating an image file, checking its size, and then
loading it into the data collector follows:

x = vxcomm_vb(pNull, "", sys, app, crfs, port, 112) 'create image file

If (x) Then
 MsgBox ("Error creating image")
Else
 y = check_file_size("flash.img", 131072) 'check if size>128K
 If (y) Then
 MsgBox ("Image too big")
 Else
 z = vxcomm_vb(pNull, cmd, sys, app, crfs, port, config)

'load software
 If (z) Then
 MsgBox ("Communications error")
 End If
 End If
End If

24 Chapter 1 Communications Programs

Videx Download for Macintosh

The communications program for Macintosh computers is Videx
Download. Videx Download can be used with a DuraTrax, LaserLite,
or LaserLite Pro. (Note: The LaserLite Mx operating system and
applications are not Macintosh compatible.)

Videx Download executes a series of commands from a commands file.
There are four types of documents that can be sent to Videx Download;
they are: commands file (text file), operating system software (OS),
application files, and cross-reference files.

To use Videx Download, drag and drop one or more files onto it. If you
are using it as a server, send it an Open Document event, with the list of
the files you want transferred. Only one commands file is recognized per
Open Document event. If Videx Download fails to execute any of the
commands, it quits immediately and returns an error code in the Open
Document event.

Videx Download Interface (Macintosh only)
If Videx Download is run without any documents (it’s sent an Open
Application event), then it runs like a normal application. It has a
Settings menu, which lists the available serial ports.

Following are activities that can be performed by Videx Download:

To change the serial port... run Videx Download, choose Settings, and
select a different serial port.

To transfer the data file... double-click the Download Data icon.
To install new operating system
software...

drag the operating system file and an
application file to the Videx Download icon.
(If unique IDs are required for each data
collector, a commands file that changes the
ID can also be dragged to the icon at the
same time.)

Important Note: You must drag an application (either Default.s or an
Application Builder application) along with the operating system to the
Videx Download icon.

Chapter 1 Communications Programs 25

Communications Program Commands File

A commands file is an ASCII text file that lists the actions that the
communications program should perform. The communications program
attempts to execute the commands sequentially from the top to the
bottom of the file. If it encounters an error, the program automatically
stops executing and notifies the user of the error.

To be recognized by the communications program, the commands file
must have a .TXT extension, a .VDX extension, or no extension. You
can create a commands file with a text editor or generate it from a
custom application program. If the communications program encounters
more than one commands file, it only opens and attempts to execute
from the last one.

A commands file typically includes commands to send a compiled
application (*.S file), associated *.CRF or text cross-reference files,
receive the data file, set the clock to the computer’s time, resend the
operating system software (*.OS file), change the ID, and so on. In
addition, commands files support a form of looping that allows
transferring data from multiple data collectors. The looping commands
are discussed later in this chapter.

The communications programs have a built-in, default list of commands
that they reference in the absence of an external commands file.
Following is a description of the commands contained in the default
commands file:

Default Commands File Description of Command Line
I 0000000000 Unlocks the data collector. This is the Unlock

command that signals an exit event to the application
and puts the data collector into communications mode.

M1 Downloading Data Puts message on line 1 of the data collector’s display.
S Instructs data collector to send data file.
Z Instructs data collector to clear data file.
M1 Loading Software Puts another message on line 1 of the display.
R Instructs the data collector to prepare to receive a file

or files.
T Sets the clock in the data collector to match the clock

in the computer.
L Locks the data collector and puts it into sleep mode for

minimum power consumption.

26 Chapter 1 Communications Programs

Commands

Any of the following commands can be listed in the commands file in
any order; however, it is important to create the list of commands in an
order that matches an expected flow of operation for the data collector.
For example, the data collector must be unlocked before it can accept
any of the other commands in the list, so each commands file list
typically begins with an I (Unlock) command. Also, important data
should be transferred from the unit prior to loading new operating
system, application, or cross-reference files.

If any command generates an error, the communications program stops
executing and returns the error. The exception to this is errors
encountered in the looping commands described on pages 28–42.

Vxcom or Download versions 2.0 or later are required to support
commands for the LaserLite Mx. Refer to pages 130–140 to work with
the LaserLite Mx.

Note: A space is required between the command and the argument.

 ' An apostrophe (') indicates a comment. The communications
 program ignores any line in the commands file that begins with
 an apostrophe.

 C id Set or change the data collector’s ID to the given ID. If an ID is
 not given, the command fails.

 D <file type> <filename> (LaserLite Mx only)
 Delete a file from LaserLite Mx memory card.

 F [<output filename>] (LaserLite Mx only)
 List the LaserLite Mx memory card file management report.

 G Run the current application using the operating system GO
 command.

 I id Send an Unlock command to the data collector using the given
 ID. This command is sent every 5 seconds for 35 seconds.

 K (LaserLite Mx only)
 Remove any deleted files from the LaserLite Mx memory card.

Chapter 1 Communications Programs 27

 L Send a Lock command and put the data collector to sleep. When
awoken with a keypress, immediately run current application.

 M1 message
 Set display line 1 to the given message.

 M2 message
 Set display line 2 to the given message.

 R [<number of bins>] <file type> <filename>
Prepare the data collector to receive a file. Using the R
command without the [<number of bins>] <file type>
parameters, tells the data collector to receive the listed operating
system software, application, or flash image file, depending on
the files that are included in the communications program. If an
operating system, application, or flash image is not being
transferred, this command doesn’t do anything (but doesn’t fail).

Using the R command with the [<number of bins>]<file type>
<filename> parameters sends the listed file to the LaserLite Mx
memory card. The [<number of bins>] parameter must be
passed if the file does not already exist on the memory card. The
<file type> and <filename> parameters are case sensitive.

 S [<folder path>] <file type> <filename>
Sends a file to the computer. Using the S command without the
<file type> parameters tells the data collector to send its data
file. The file is put in the given [<folder path>]. If no [<folder
path>] is given, Vxcom and Download write the file to the
current directory. Videx Download for Macintosh writes the file
to the desktop. The file is named by the BASIC application in
the OPEN statement.

 For example:
 OPEN "data.txt" FOR APPEND AS #0

If a file with that filename already exists in the communications
folder, then the new data is appended to that file. If an error
occurs during transmission of the data, then the destination file
is truncated to its original size. Using the <file type> parameter
sends the listed file from the LaserLite Mx memory card to the
computer. The <file type> and <filename> parameters are case
sensitive.

28 Chapter 1 Communications Programs

 T Set the time on the data collector to the computer’s time
 (synchronizes the clocks).

 Z Clear (zap) the data in the data collector.

Note: The commands in this list approximate the operating system
commands described in Chapter 3.

Looping Commands

You can also use the following looping commands in the commands file.
FOREACH...END, FORALL...END, FOREVER...END

Looping commands are provided for transferring data from multiple
units, managing retries, and setting up a continuous loop operation. The
purpose of a “loop” in a commands file is to enable a command or set of
commands to be repeated until a certain criterion is met. The criterion is
determined by the FOREACH, FORALL, or FOREVER statement.
The communications program executes each command within the loop,
beginning with the FOREACH, FORALL, or FOREVER statement
and ending with the END statement. Loops may be nested within loops
up to four levels deep.

Example:

FOREVER

commands
FOREACH

commands
END

END

If an operation fails within a loop, execution continues immediately at
the end of the loop and a status message is written to the STATUS.TXT
file if the -s1 or -s2 parameter was used in the communications
program’s command line.

Note: No status message is written for an Unlock command timeout
error. Pressing the <Escape> key will terminate the communications
program.

Chapter 1 Communications Programs 29

When using looping commands to transfer the data from data collectors
in a multiple Base Station set up, you must give each data collector a
unique ID; this allows the computer to access each data collector and
verify that it has transferred the data from each one. Refer to your data
collector’s hardware manual for instructions on connecting multiple
Base Stations to one computer.

Assigning IDs

Changing a Data Collector’s ID with a Windows Computer

In Windows you can change a data collector’s ID by first creating a
commands text file, then clicking and dragging the file onto the Vxcom
icon. Vxcom uses the commands file to unlock the data collector and
change its ID.

During normal operation, a unit is given an ID of ten zeros. To change
the ID, create a text file consisting of the following three command lines:

1) an I command, followed by a space, followed by
ten zeros to unlock the unit;

2) a C command, followed by a space, followed by

the new ID for the unit;

3) and an L command to relock the unit.

I 0000000000 Sends an Unlock command to the data collector.
(Note: Ten zeros will unlock any data collector.)

C new ID# Changes the unit’s ID to the new ID. The ID can
be any alphanumeric combination of up to ten
characters in length.

L Sends a Lock command and puts the data
collector to sleep. When the unit is awakened with
a keypress, it immediately runs the current
application.

30 Chapter 1 Communications Programs

For example, to change a unit’s ID to 12345:

1. Use a word processing program to create a text file containing the

following three lines:

I 0000000000
C 12345
L

2. Save the file as a text file with a .txt, .vdx, or no extension and quit

the program.

3. Place a data collector into the Base Station slot.

IMPORTANT: When sending a file to a data collector, it must be the
ONLY data collector attached to the computer.

4. Click and drag the text file you created onto the Vxcom icon.

5. Vxcom executes the commands listed in the text file: it unlocks the

unit, changes the ID to what is listed after the C command (in this
case, 12345), and then relocks the unit.

6. Remove the data collector from the Base Station slot; it is ready to

use.

Chapter 1 Communications Programs 31

To continue changing other data collector’s IDs:

1. Reopen the text file.

2. Change the ID listed after the C command by selecting 12345 and

typing in a new ID. (Note: There must be a space character between
the C and the ID.)

3. Save and close the file.

4. Insert a data collector into the Base Station slot.

5. Click and drag the edited text file to the Vxcom icon.

6. Vxcom executes the commands listed in the text file: it unlocks the

unit, changes its ID to what is listed after the C command, and then
relocks the unit.

7. Continue these same steps until a unique ID is assigned to each

unit.

Note: Keep a list of the IDs; you will need this list in the section
“Transferring Data from Multiple Data Collectors.”

32 Chapter 1 Communications Programs

Changing a Data Collector’s ID with a DOS Computer

To assign a unique ID when using a DOS computer, create a commands
file, and then enter the name of the commands file on the Download.exe
command line. Download.exe then uses the commands file to unlock the
data collector and change the ID.

During normal operation, a data collector is given an ID of ten zeros. To
change the ID, you must create a commands file consisting of the
following three command lines:

1) an I command, followed by a space, followed by
ten zeros to unlock the unit;

2) a C command, followed by a space, followed by

the new ID for the unit;

3) and an L command to relock the unit.

I 0000000000 Sends an unlock command to the data collector.
 (Note: Ten zeros will unlock any data collector.)

C new ID# Changes the unit’s ID to the given ID. The ID can be
 any alphanumeric combination of up to ten
 characters in length.

L Sends a LOCK command and puts the data collector
 to sleep. When the unit is awakened with a keypress,
 it immediately runs the current application.

Chapter 1 Communications Programs 33

For example, to change a unit’s ID to 12345:

1. Use a word processing program to create a commands file

containing the following three lines:

I 0000000000
C 12345
L

2. Save the file as a text file with a .txt, .vdx, or no extension and quit

the program.

3. Place a data collector into the Base Station slot.

IMPORTANT: When you are sending a file to a data collector, it must
be the ONLY data collector attached to the computer.

4. Enter the name of the commands file on the Download.exe

command line.

5. Download.exe executes the commands listed in the file: it unlocks

the unit, changes the ID as instructed by the C command (in this
case, 12345), and then relocks the unit.

6. Remove the data collector from the Base Station slot and it is ready

to use.

34 Chapter 1 Communications Programs

To continue changing other data collector’s IDs:

1. Reopen the commands file.

2. Change the ID listed after the C command by selecting 12345 and

typing in a new ID. (Note: There must be a space character between
the C and the ID.)

3. Save and close the file.

4. Insert a data collector into the Base Station slot.

5. Reactivate the Download.exe command line containing the name of

the commands file.

6. Download.exe executes the commands listed in the file: it unlocks

the unit, changes its ID as instructed by the C command, and then
relocks the unit.

7. Continue these same steps until you have assigned a unique ID to

each of your units.

Note: Keep a list of the IDs you are using; you will use this list in the
section “Transferring Data from Multiple Data Collectors.”

Chapter 1 Communications Programs 35

Changing a Data Collector’s ID with a Macintosh Computer

To assign an ID with a Macintosh computer, you must first create a
commands file, and then click and drag the file onto the Videx
Download icon. Videx Download uses the commands file to unlock the
data collector and change the ID. (Note: The LaserLite Mx is not
Macintosh compatible.)

During normal operation, a data collector is given an ID of ten zeros. To
change the ID, create a commands file consisting of the following three
command lines:

1) an I command, followed by a space, followed by
ten zeros to unlock the data collector;

2) a C command, followed by a space, followed by

the new ID for the data collector;

3) and an L command to relock the data collector.

For example, to change a data collector’s ID to 12345:

1. Use a word processing program to create a file containing the

following three lines:

I 0000000000
C 12345
L

2. Save the file as a text file with a .txt, .vdx, or no extension and quit

the program.

3. Place a data collector into the Base Station slot.

IMPORTANT: When you are sending a file to a data collector, it must
be the ONLY data collector attached to the computer.

36 Chapter 1 Communications Programs

4. Click and drag the commands file onto the Videx Download icon.

5. Videx Download executes the commands listed in the text file: it

unlocks the unit, changes the ID to what is listed after the C
command (in this case, 12345), and then relocks the unit.

6. Remove the data collector from the Base Station slot; it is now

ready to use.

To continue changing other data collector’s IDs:

1. Reopen the commands file.

2. Change the ID listed after the C command by selecting 12345 and

typing in a new ID. (Note: There must be a space character between
the C and the ID.)

3. Save and close the file.

4. Insert another data collector into the Base Station slot.

5. Click and drag the edited commands file to the Videx Download

icon.

6. Videx Download executes the commands in the commands file: it

unlocks the unit, changes its ID as instructed by the C command,
and then relocks the unit.

7. Continue these same steps until you have assigned a unique ID to

each data collector.

Note: Keep a list of the IDs; you will use this list in the following
section: “Transferring Data from Multiple Data Collectors.”

Chapter 1 Communications Programs 37

Transferring Data from Multiple Data Collectors

To transfer data from a group of data collectors in one transfer process,
you must:
1. Create a commands text file that uses the FOREVER, FOREACH,

or FORALL looping commands to transfer the data from the data
collectors.

2. Insert all of the data collectors into their Base Stations.
3. If using Windows, click and drag the commands text file onto the

Vxcom icon; if using DOS, enter the name of the commands text file
on the Download.exe command line; or if using Macintosh
(DuraTrax, LaserLite, or LaserLite Pro only), click and drag the
commands text file onto the Videx Download icon.

The three looping commands provide transfer methods for three different
situations. The FOREVER loop is useful if you have a computer
dedicated to transferring the data from the data collectors. The
FOREACH loop is useful if you are transferring data from only a
portion of the data collectors. The FORALL loop is useful if all of the
data collectors are required to be transferred during the process.

The following table describes the looping commands:

FOREACH This loop will search for each data collector in the list of IDs.
If it locates the data collector with the ID, it executes the
commands within the loop once; if it does not locate the data
collector with the ID, it goes on to the next ID. This loop
attempts to execute commands within a loop once for each ID
listed.

FORALL This loop will look for each listed data collector’s ID until it
has located and transferred the data from each ID in the list.
This loop attempts to execute commands within a loop
indefinitely, until all listed IDs have been located.

FOREVER For use with a computer that is dedicated to transferring data.
This loop will transfer the data from any data collector it
locates. This loop attempts to execute commands within a loop
indefinitely.

Table 1-1 Looping Commands

38 Chapter 1 Communications Programs

FOREVER...END - Attempts to execute commands within the loop
indefinitely.

Example:

FOREVER 'Begin the loop.

I 0000000000
'Unlock any unit.
M1 Transferring Data 'Put message on display.
S 'Transfer data from unit.
Z 'Clear data from unit.
T 'Set time by computer’s time.
G 'Restart the application.

END 'End loop, begin re-executing at top.

Note on the Unlock (I) command: No additional characters should be
included on the same line as the Unlock (I) command. Any characters
after the ID (for example, space characters or comments) will cause this
command to fail. In the above example, the comment associated with the
Unlock command is on a separate line.

FOREACH [“id file.ext”] or [<ID-1, ID-2, ...>] ... END - Attempts to
execute the commands within the loop once for each ID passed. Requires
an argument that may be either a list of IDs or the quoted name of a file
that contains a list of IDs. The list may be either comma or space
delimited. If a file is used, the IDs may also be separated by carriage
return/line feed characters.

Example:

FOREACH ID1, ID2, ID3 'Begin the loop.

I loop_id
'Unlock the unit using the special identifier. This
'identifier substitutes for all the IDs listed on the
'first line.

M1 Transferring Data 'Put message on display.
S 'Transfer data from unit.
Z 'Clear data from unit.
T 'Set time by computer’s time.
L 'Lock the unit and put it to sleep.

END 'End loop, begin re-executing at top.

Chapter 1 Communications Programs 39

Note on the loop_id argument: When the argument of the Unlock
command is a specific ID (as in the previous FOREVER example), the
program attempts to unlock the unit eight times at five-second intervals.
This ensures that a unit is unlocked regardless of its sleep cycle (a unit
sleeps for 25 seconds, then wakes for 5 seconds). If the program does not
unlock a unit, the program returns an error and aborts. On the other
hand, when the argument of the Unlock command is loop_id (as in the
FOREACH example), the program only makes one attempt to unlock
the unit. If it is successful, it performs the remaining commands in the
loop; if not successful, it moves on to the next value for loop_id without
aborting the program. Given the unit’s sleep cycle, it is unlikely that one
attempt will successfully unlock a unit. Therefore, it would generally not
be reasonable to use a FOREACH loop by itself as in the above
example. See pages 41–42 for examples that show the appropriate use of
the FOREACH loop.

FORALL [“id file.txt”] or [<ID-1, ID-2, ...>] ... END - Attempts to
execute the commands within the loop for each ID passed. FORALL
continues to attempt the commands within the loop until all commands
are successfully completed for all ID’s. When all commands are
completed for one ID, it is removed from the list and that ID isn’t
attempted again. Requires an argument that may be either a list of IDs or
the quoted name of a file that contains a list of IDs. The list may be
either comma or space delimited. If a file is used, the IDs may also be
separated by carriage return/line feed characters.

Example:

FORALL "IDs.txt" 'Begin the loop.

I loop_id
'Unlock the unit using special identifier. This
'identifier substitutes for all IDs in the IDs.txt
'file.

M1 Transferring Data 'Put message on display.
S 'Transfer data from unit.
Z 'Clear data from unit.
T 'Set time by computer’s time.
L 'Lock unit and put it to sleep.

END 'End loop, begin re-executing at top.

40 Chapter 1 Communications Programs

In order to clarify the functioning of these different looping structures, it
is helpful to consider four different scenarios for transferring data from
multiple units.

Scenario #1: The user has multiple data collectors to transfer, but only
one at a time will be put in the Base Station or in front of the JetEye. A
computer is dedicated to transferring data from the data collectors, as
they become available. In this situation, the units do not need to be
assigned individual IDs and a FOREVER loop can be used:

FOREVER
I 0000000000
M1 Transferring Data
S
Z
T
L
END

This loop continues indefinitely, unlocking any data collector that is
available. It is important that only one unit at a time is in the Base
Station or in front of the JetEye when using this looping structure. This
loop will unlock any data collector; if more than one data collector is
unlocked at a time, communications will fail.

Scenario #2: The user has multiple data collectors to transfer. Some or
all of them may be in the Base Station at any time. Each unit must have
its data transferred exactly one time. A computer is dedicated to
transferring the data from the units as they become available. In this
situation, each unit must be assigned a unique ID and the FORALL loop
can be used:

FORALL "IDs.txt"

I loop_id
M1 Transferring Data
S
Z
T
L

END

This loop continues until the data from each unit in the IDs.txt file has
been transferred once. Multiple units can be in the Base Station at one
time because only one unit will be unlocked at a time.

Chapter 1 Communications Programs 41

Scenario #3: The user has multiple data collectors to transfer. Some or
all of them may be in the Base Station at any time. The data from each
unit is to be transferred when the unit is placed in the Base Station; some
of the units may have their data transferred more than one time. A
computer is dedicated to transferring the units as they become available.
In this situation, each unit must be assigned a unique ID and a
FOREACH loop nested inside a FOREVER loop can be used:

FOREVER

FOREACH "IDs.txt"
I loop_id
M1 Transferring Data
S
Z
T
L

END
END

This loop continues indefinitely, continually attempting to unlock any
unit contained in the IDs.txt file. Unlike the FORALL loop in Scenario
#2, this loop continues attempting to transfer the data from the unit even
after it has been successfully transferred one time.

Scenario #4: The user has multiple data collectors to transfer; all of the
available units are in their Base Stations. However, some of the units
(listed in the IDs.txt file) are not available to transfer. If the computer is
unable to unlock a particular unit, the computer stops trying to unlock
that unit. In this situation, each unit must have a unique ID and a
FOREACH loop can be used:

FOREACH "IDs.txt"

I loop_id
M1 Transferring Data
S
Z
T
L

END

42 Chapter 1 Communications Programs

As was explained in the earlier discussion of the FOREACH loop, when
the argument of the Unlock command is loop_id, the program only
makes one attempt to unlock the unit. Given the unit’s sleep cycle, it is
unlikely that one attempt will successfully unlock a unit. However, it is
possible to ensure that each unit is awake when the program attempts to
unlock it. This is done by placing six unused IDs at the beginning of the
IDs.txt file (Figure 1-2).

Dummy1
Dummy2
Dummy3
Dummy4
Dummy5
Dummy6
ValidID1
ValidID2
ValidID3
ValidID4

Figure 1-2 Sample IDs.txt File

If a unit is awake and receives an Unlock command with the wrong ID,
it will stay awake as long as it detects activity on the serial port. By
placing six unused IDs at the beginning of the IDs.txt file, it is possible
to ensure that each unit receives at least one Unlock command with an
invalid ID and then stays awake. Then each unit is awake when the
FOREACH loop attempts to unlock it and transfer its data. The program
only attempts to unlock each unit one time; if a unit is not present, the
program moves on to the next ID. The program quits after attempting
one time to unlock and transfer the data from each unit.

Chapter 2 Monitor Program 43

Chapter 2

Monitor Program

This chapter contains information on:

• = The monitor program.

• = Resetting the data collector to monitor mode.

• = The monitor commands.

• = Recovering data.

• = Loading to LaserLite Pro or LaserLite Mx flash memory.

44 Chapter 2 Monitor Program

Monitor Program Overview

The monitor program is a boot loader named VX1 Monitor that resides
in the data collector’s ROM. VX1 Monitor allows updating the RAM
from the serial port and accepts system software in Intel HEX ASCII file
format (uploaded at 9600 baud, no parity, 8 data bits, 1 stop bit).

Resetting the Data Collector to Monitor Mode

In the unlikely event that your data collector locks up and does not
recover after two minutes, you must manually reset the unit to monitor
mode and resend the operating system software along with an
application to the data collector.

To manually reset the data collector to monitor mode:

1) Remove the battery end cap.

2) Hold the scan button down while replacing the battery end cap.

3) The unit will beep three times, indicating a successful reset.

4) The DuraTrax and LaserLite will show VX1 Monitor 1.07 on the
first line, the LaserLite Pro will show VX1 Monitor 1.11 or 1.34 on
the first line, and the LaserLite Mx will show VX1 Monitor 1.33 or
1.34 on the first line. All four units will show Ready, bps=9600 on
the second line of the display.

5) Use the appropriate communications program (Vxcom for Windows,
 Download for DOS, or Videx Download for Macintosh) to resend

the operating system software. (Note: You must use Vxcom or
Download if communicating with a LaserLite Mx with a memory
card.)

See Chapter 1 for information on using the communications programs.
See Chapter 3 for information on the operating system software.

Chapter 2 Monitor Program 45

Monitor Program Signatures

DuraTrax and LaserLite:
VX1 Monitor 1.07
ROM checksum: 59FF

LaserLite Pro:
VX1 Monitor 1.11 (or 1.34)
ROM checksum: 52AC

LaserLite Mx:
VX1 Monitor 1.33 (or 1.34)
ROM checksum: 52AC

Monitor Commands

The monitor program prompts the host for a command by sending an
asterisk character (*) out of the serial port preceded by a \r\n (carriage
return and line feed). Following is a list of the commands and their
descriptions.

B Read battery level
Returns a hex value directly from the A to D chip. Range is 00–FF.

To convert to voltage:

1) Convert the hexadecimal value to a decimal value.
2) Multiply the decimal value by 0.02898.

C Read config
Returns the software version.

D ssss eeee Dump hex range
Returns RAM contents from beginning of range (ssss) to end of range
(eeee) in Intel HEX packets. This command may be used to dump the
contents of RAM from the data collector to a file on the computer.
D 0000 FFFF dumps the first bank of memory (BANK 0).

46 Chapter 2 Monitor Program

G aaaa Go to address
Transfers control from the monitor program to the system software. The
Videx RAM resident software always uses 7FFB as the entry point. To
start RAM resident system software, enter G 7FFB. To restart the
monitor program send G 0.

H Help screen
Displays a brief list of commands supported by the monitor program
(VX1 Monitor 1.07 only).

L Load hex
Puts the monitor into a load mode and prompts the host with a question
mark character for the first line of the bootstrap hexadecimal file. After
the (?) prompt has appeared, the only valid inputs to the monitor are a
properly formatted Intel Hex line of data or a blank line.

After the monitor has processed each valid line of input, it responds with
another load prompt (?). If the monitor receives an improperly formatted
line or invalid information, it drops back into the monitor command
mode and issues a monitor prompt (*).

It is possible for the host to recover from such an error by re-entering the
load mode and re-issuing the incorrectly received line.

When the monitor receives the Intel Hex End of File record
(:00000001FF\r\n), the unit displays loading finished, ready,bps=9600.

If the monitor receives an erroneous line, it returns to the command line
mode and displays loading failed, ready, bps=9600.

If the monitor does not receive any data for 30 seconds, it returns to the
command line mode and displays loading time-out, ready, bps=9600.

Chapter 2 Monitor Program 47

Pn Read port
Read the I/O page of the memory bank. Returns a 1 byte value.

Pn=dd Write port
Sets the I/O page of the memory bank to address. To set P1 to address
the desired RAM bank, use the following pattern:

32K memory bank number Modify the value of P1
Bank 0 Clear bits 2, 3
Bank 1 Set bit 2, clear bit 3
Bank 2 Clear bit 2, set bit 3
Bank 3 Set bits 2, 3

(See the system diagrams on pages 48–50.)

R aaaa Read external
Returns the contents of RAM memory from the given address. Displayed
on the computer screen in both hexadecimal and decimal ASCII.

RI Read internal
Returns the contents of the processor memory.

S Sleep
Puts the system in low-power mode. Returns “bye.”
The data collector may be reawakened by pressing any button or by
sliding the lock switch from the OFF to the ON position.

T Read RTC
Returns the current date and time stored in the real-time clock. Format is
MMDDYYHHMMSS. (VX1 Monitor 1.07 and 1.11 only.)

T mm dd yy hh mm ss Write RTC
Writes a new value to the real-time clock. If it receives invalid input, the
monitor returns an “out of range” error message. (VX1 Monitor 1.07 and
1.11 only.)

V ssss eeee Verify range
Calculates and returns a CRC checksum for a given range of memory.

48 Chapter 2 Monitor Program

W aaaa dd Write external
Enables writing a byte value to a given memory address in system
memory.

WI aa dd Write internal
Enables writing a byte value to a given memory address in processor
memory.

System Block Diagram

CPU RAM

ad0-7

ad8-14

AD0-7
Latch

HC373

p1.2

ad15

p1.3

p1.0

ad4
ad5

AD8-14

AND
Gate

AND
Gate

I/O Select

AD15

AD16

LCD

Output Latch

Input Buffer

Chapter 2 Monitor Program 49

System Memory Map Diagram

ON-CHIP ROM

BANK 3 128K
MA15=1 MA16=1

BANK 2
MA15=0 MA16=1

BANK 1
MA15=1 MA16=0

BANK 0
MA15=0 MA16=0

32K BLOCKS
(128K x 8 Total)

1FFFFh

17FFFh

0FFFFh

07FFFh

07FFFh

00000h
EA=0 INTERNAL ROM EA=1 EXTERNAL RAM |___A15=1____|

DuraTrax/LaserLite System Memory Map Diagram

50 Chapter 2 Monitor Program

System Memory Map Diagram (continued)

27FFFh

BANK 7
MA15=1 MA16=1

BANK 6
MA15=0 MA16=1

BANK 5
MA15=1 MA16=0

BANK 4
MA15=0 MA16=0

3FFFFh

37FFFh

2FFFFh

ON-CHIP ROM

BANK 3 128K
MA15=1 MA16=1

BANK 2
MA15=0 MA16=1

BANK 1
MA15=1 MA16=0

BANK 0
MA15=0 MA16=0
RAM0_SEL0

32K BLOCKS
(128K x 8 Total)

1FFFFh

17FFFh

0FFFFh

07FFFh

07FFFh

00000h EA=0 INTERNAL ROM EA=1 EXTERNAL RAM |___A15=1____|

RAM0_SEL=0

RAM0_SEL=1

LaserLite Pro/LaserLite Mx System Memory Map Diagram

Chapter 2 Monitor Program 51

Dumping Memory to Recover Data

In the event of an operating system lock-up, memory may be dumped
from the DuraTrax, LaserLite, or LaserLite Pro for the purpose of data
recovery prior to loading a new operating system and application. It
should not be necessary to dump data from a LaserLite Mx since its data
resides on the memory card independently from system memory.

Caution must be exercised to set and reset the bits to the correct values
or the data collector may not operate properly.

Components required:

• = A computer terminal program with a “capture” mode (i.e.,
Procomm).

• = A Videx Base Station with serial cable attached to a computer.

• = Software to convert 32 character per line Intel HEXASCII to
binary. The public domain program BINTEL.COM is suitable.

• = A calculator or computer program like Windows CALC.EXE that
can convert hexadecimal values to binary values.

You may use the R xxxx xxxx to address up to 64K of memory with
addresses ranging from 0000 to FFFF. Remember that 0000 to 7FFF is
always RAM 0, BANK 0 (see the system memory map diagrams on the
previous pages).

To select each bank of memory (0–3) in RAM0_SEL = 0,
RAM0_SEL = 1, or FLASH, use the following values:

 BANK0 MA15=0 MA16=0
 BANK1 MA15=1 MA16=0
 BANK2 MA15=0 MA16=1
 BANK3 MA15=1 MA16=1

To select RAM0_SEL or FLASH, use these values:

 RAM0_SEL=0 8070=F8
 RAM0_SEL=1 8070=F9
 FLASH 8070=FC

52 Chapter 2 Monitor Program

The general steps are as follows:

1. Read P1; it returns a hexadecimal value. Translate it to a binary

value. For example, if P1=94, the binary value of 94 hex is
10010100.

Bit Number 7 6 5 4 3 2 1 0
Example
Value

1 0 0 1 0 1 0 0

 Enables
 MA16 MA15 writing to

the latch.

2. If needed, set the value of bit 0 to 1 to enable writing to the latch.

Use the following commands to write to the latch:

 RAM0_SEL=0 W 8070=F8
 RAM0_SEL=1 W 8070=F9
 FLASH W 8070=FC

3. If you set bit 0 in Step 2, clear it.

4. Dump the memory (D 0000 FFFF).

5. Repeat for the next memory bank as needed.

6. Convert the hexadecimal files to binary files and combine as needed.

7. Data stored in the data collector is printable ASCII. You may use a

text editor to view the binary files and retrieve the data.

Chapter 2 Monitor Program 53

Special Notes on LaserLite Pro Monitor 1.11

Loading from Flash Memory

At startup, the monitor program in the LaserLite Pro and the LaserLite
Mx reads signature bytes to determine whether to copy the contents of
flash memory to RAM. The signature bytes are located as follows:

In RAM: 7FF9 and 7FFA Bank 0
In Flash: FFF9 and FFFA Bank 0

Signature byte values:

Location Value Monitor program
actions at startup

What writes this value
and when is it written?

FFF9–FFFA
(flash)

5A–A5

Valid image file is
stored in flash.

Monitor program after
validating the image file is
loaded in the flash.

7FF9–7FFA
(RAM)

5A–A5 Valid image file is
stored in RAM. Do not
load image file from
flash. Automatically
start the operating
system at 7FFB after
monitor program
startup.

Monitor program when it
copies the image file from
flash.

7FF9–7FFA 3C–C3 Valid image file is
stored in RAM. Do not
load image file from
flash. Do not
automatically start the
operating system after
monitor program
startup.

The operating system when
it quits execution and returns
to the monitor program.

7FF9–7FFA any
other
values

No valid image file is
stored in RAM. Check
flash. If valid image
file is stored in flash,
copy contents of flash
to RAM and execute at
7FFB.

All other values indicate that
RAM contents are lost or
corrupted. This could occur
if batteries were removed
from the system for several
weeks and the backup
battery drains.

54 Chapter 2 Monitor Program

Startup Model for VX1 Monitor 1.33 and 1.34

Each time the LaserLite Pro and LaserLite Mx awaken from sleep or
when they are reset, the system starts with the monitor program. At that
time, the monitor program evaluates seven conditions. Based on their
values, it selects an appropriate path of execution.

These are the seven conditions it evaluates and the bit values it sets:

1. Reads the bytes at 7FF9 and 7FFA. If these bytes evaluate to 3C C3

then the monitor program starts and does not read any of the other
values.

3C C3 at 7FF9? Bit 0
Yes = 0000001
No = 0000000

2. Reads internal memory to match against a known valid pair of bytes

(5A A5 for LaserLite Pro, 3C C3 for LaserLite Mx). If it matches,
this indicates that the data collector went through a normal shutdown
and saved the state of the processor. Otherwise it indicates an
abnormal shutdown such as a power loss during operations.

Valid Internal Signature Bit 1
Yes = 0000010
No = 0000000

3. Reads external memory to match against a known valid pair of bytes

(5A A5). If it matches, this indicates that the data collector has a
valid operating system loaded into memory. Otherwise, it indicates
no operating system is loaded. This could occur if both the main
batteries and the backup batteries were allowed to completely drain.

Valid External Signature Bit 2
Yes = 0000100
No = 0000000

Chapter 2 Monitor Program 55

4. Checks to see if there is a memory card module, if a memory card is
present, if it has a recognizable format, and if the memory card has a
system boot file. The monitor sets flags regarding these “memory
card” checks that may be read by the LaserLite Mx operating system
at startup.

Card_is_bootable Bit 3
Yes = 0001000
No = 0000000

5. Reads flash memory to match against a known valid pair of bytes

(5A A5). If it matches, this indicates that the data collector has a
valid operating system and application loaded into flash.

Application in Flash Bit 4
Yes = 0010000
No = 0000000

6. Reads the state of the scan button.

Scan button down Bit 5
Yes = 0100000
No = 0000000

7. If there is a memory card, it reads the ID of the memory card and

compares it against a value stored in external memory at 7F D1. The
monitor uses this address to store the most recent ID of the memory
card from which the LaserLite Mx booted.

Card ID <> value at 7DF1 Bit 6
Yes = 1000000
No = 0000000

56 Chapter 2 Monitor Program

The following table uses a bitmap model to indicate the path of
execution it will select.

IF Bit 0 = 1 Go to Monitor Mode
IF Bit 6 = 1 and Bit 3 = 1 Boot from SSFDC

IF 0000010 Go to Monitor Mode
IF 0000100 Set power_fail flag then start OS
IF 0000110 Start OS
IF 0001000 Boot from SSFDC
IF 0001010 Boot from SSFDC
IF 0001100 Set power_fail flag then start OS
IF 0001110 Start OS
IF 0010000 Boot from Flash
IF 0010010 Boot from Flash
IF 0010100 Set power_fail flag then start OS
IF 0010110 Start OS
IF 0011000 Boot from SSFDC
IF 0011010 Boot from SSFDC
IF 0011100 Set power_fail flag then start OS
IF 0011110 Start OS
IF 0100000 Go to Monitor Mode
IF 0100010 Go to Monitor Mode
IF 0100100 Set power_fail flag then start OS
IF 0100110 Start OS
IF 0101000 Boot from SSFDC
IF 0101010 Boot from SSFDC
IF 0101100 Set power_fail flag then start OS
IF 0101110 Start OS
IF 0110000 Go to Monitor Mode
IF 0110010 Go to Monitor Mode

Chapter 2 Monitor Program 57

IF 0110100 Set power_fail flag then start OS
IF 0110110 Start OS
IF 0111000 Boot from SSFDC
IF 0111010 Boot from SSFDC
IF 0111100 Set power_fail flag then start OS
IF 0111110 Start OS
IF 1000000 Go to Monitor Mode
IF 1000010 Go to Monitor Mode
IF 1000100 Set power_fail flag then start OS
IF 1000110 Start OS
IF 1010000 Boot from Flash
IF 1010010 Boot from Flash
IF 1010100 Set power_fail flag then start OS
IF 1010110 Start OS
IF 1100000 Go to Monitor Mode
IF 1100010 Go to Monitor Mode
IF 1100100 Set power_fail flag then start OS
IF 1100110 Start OS
IF 1110000 Go to Monitor Mode
IF 1110010 Go to Monitor Mode
IF 1110100 Set power_fail flag then start OS
IF 1110110 Start OS

58 Chapter 2 Monitor Program

Notes:

Chapter 3 Operating System Software 59

Chapter 3

Operating System Software

This chapter contains information on:

• = The operating system software.

• = The operating system software commands.

• = The Default.s application.

• = LaserLite Mx memory card operating system commands.

60 Chapter 3 Operating System Software

Operating System Software Overview

The operating system software (OS) must be installed on the data
collector before it can gather and store data. The filename of the
operating system software will always end with a .OS extension. The
exact filename of the OS will change as new versions are released;
however, the OS for the DuraTrax will always begin with Trax, the OS
for the LaserLite will always begin with Lite, the OS for the LaserLite
Mx will always begin with Lmx, and the OS for the LaserLite Pro will
always begin a Pro. (Note: Double-check the actual name of your
operating system files.)

The OS consists mostly of a virtual machine that executes an
application. An application is a special binary machine language
compiled from BASIC code that includes instructions to gather events,
manipulate integers and strings, manage files, talk to the data collector,
and so on. The virtual machine provides all of the functionality available
to developers of DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx
software.

In addition to the virtual machine, the OS file also presents a command
line interface (using the serial port for stdin and stdout), with
commands to send and receive files, get the battery level, get and set the
clock, change the data collector’s ID, and so on.

When the END instruction is executed by the virtual machine, the OS
returns to the command line. When the G or L commands are issued to
the command line, the OS executes the virtual machine. (The G
command is automatically executed by the OS if no characters are
received for 60 seconds, or if an Unlock command is received with the
wrong ID.)

The virtual machine executes the current application. There can be only
one application at a time installed with the OS.

Chapter 3 Operating System Software 61

Operating System Command Line
After the BASIC program ends, the operating system returns to a
command line, analogous to the DOS command line. It uses the serial
port for standard input and output, so you can communicate with the data
collector using a Videx Base Station and standard communications
software.

When the operating system first returns to the command line, it displays
the version of the operating system software on one line, and the data
collector’s ID on the next line. It then prompts the user with the standard
“>” prompt.

If you are using a terminal program, you can type a command at the
prompt terminated with a carriage return character. The operating system
software will respond to the command, and then display a prompt again.
If the command was completed successfully, it displays a “>” prompt. If
the command couldn’t be completed for some reason, it displays a “!”
prompt.

Standard command syntax is: <command> [argument] <cr>
All operating systems will ignore the linefeed character after a carriage
return, except with the I command.

Any command that causes the size of the data file to be reset to 0 must
be sent three times in quick succession; this includes the Default
Application, Receive, Clear Data, and the Load from Flash
commands. After the first and second command, a “+” prompt is
displayed, to indicate that it is waiting for more. After the third
command, the normal “>” prompt is displayed if the command is
successful. If the second or third commands aren’t sent quickly enough,
then the error prompt “!” is displayed. (The second and third commands
must be received within two to three seconds after the first command.)

The command line has a 60-second timeout. If no characters are received
for 60 seconds, it automatically executes the G command.

62 Chapter 3 Operating System Software

Operating System Commands

All commands consist of a single command letter. The command letter is
not case sensitive. For some commands, an argument follows the
command letter. Any spaces between the command and the first letter of
the argument are ignored. (None are required.) The argument extends
from the first non-space character to the carriage return that ends the
line. Only the first 31 characters of the argument are significant; the rest
are discarded.

Battery
The Battery command is a B with no arguments. It responds with the
current battery voltage (for example, “5.65”).

Set ID
The Set ID command is a C with one optional argument. If the argument
is supplied, the unit’s ID is changed to the first ten characters of the
argument. With or without the argument, it responds with the unit’s ID.

Default Application*
The Default Application command is a D with no arguments. Since this
command clears data it must be sent three times. In operating systems
prior to OS122, this sets the current application to be the default
application built into the operating system software. Any data is
destroyed, and any application that was previously installed is also
destroyed. A listing of the default application is contained in the disk
accompanying this software package. The filename of the default
application for DuraTrax, LaserLite, and LaserLite Pro is Default.s. The
filename of the default application for LaserLite Mx is MX-DEMO.s.
See pages 66–73 for more information on the default application.

*For operating systems 122 and later, this command behaves identically
to the Z (clear data) command.

Chapter 3 Operating System Software 63

Load from Flash (OS versions 1.22 or later, LaserLite Pro and LaserLite
Mx only)
The Flash command is an F with no arguments. Since this command
clears data on the LaserLite Pro and the LaserLite Mx, it must be sent
three times. In operating systems 1.22 or later, this command instructs
the monitor program to check the unit’s flash memory for a valid image
file (*.IMG) and, if found, load that image file into RAM. Any data is
destroyed, and any application previously in the LaserLite Pro or
LaserLite Mx is overwritten.

If this command is executed on a DuraTrax or LaserLite (OS versions
1.22 or later) it behaves exactly like the Q (quit) command. It does not
destroy data on the DuraTrax or LaserLite.

Go
The Go command is a G with no arguments. This causes the current
BASIC application to be executed.

Unlock
The Unlock command is an I (for identify) with one argument. The
argument is either the unit’s ID or ten zeros. Ten zeros will unlock any
Videx data collector. The I (Unlock) command must be terminated with
only a carriage return, not a carriage return/line feed combination. Both
the BASIC application and the command line respond to this command.

If an I (Unlock) command is sent to the BASIC application, an exit
event is returned the next time INPUTEVT is called. In this case, there
must be a delay of at least 500 ms between sending the command and
calling INPUTEVT without any other characters being sent. The BASIC
program should typically respond to an exit event by ending the
program.

If an Unlock command is used without an argument, it responds with the
system version and unit ID. (This is the same information that is
displayed when the command line is first entered.) If an I is received, but
the argument doesn’t match ten zeros or the unit ID or if it is terminated
with a carriage return and linefeed, then the data collector immediately
executes the G command. This prevents two units from being unlocked
at the same time.

The I command must be terminated with only a carriage return, not a
carriage return-line feed pair.

64 Chapter 3 Operating System Software

Lock
The Lock command is an L with no arguments. It causes the data
collector to go to sleep immediately. When the unit is awakened, it
executes the BASIC application.

Message
The Message command is an M, followed immediately by either a 1 for
the top line of the display or a 2 for the bottom line, followed by one
argument. The argument is written to the display, starting at the
beginning of the indicated line.

Pass to Memory Card (LaserLite Mx only)
The Pass to Memory Card command is a P followed by a command
string. The command strings are the LaserLite Mx memory card
command set; these are the same commands that are used in the Videx
BASIC CARDCMD statement’s command_str$ parameter. See pages
105–129 for information on the Pass to Memory Card command
strings.

Quit Operating System
The Quit Operating System command is a Q with no parameters. It
causes the operating system in the data collector to stop executing and
restarts the monitor program. This command neither destroys data nor
removes the application. To restart the operating system, enter G 7FFB
at the monitor command line.

Receive
The Receive command is an R with no arguments. Since this command
clears data it must be sent three times. It causes the data collector to start
receiving a new application using the YModem protocol. Any data
contained in the data collector is destroyed.

The YModem protocol is XModem CRC, with optional 1K packets, and
batch extensions. (Some communications programs claim to implement
YModem, when they really just implement one or two extensions to
XModem.)

If the application is not successfully received, the D command is
executed and the default application, if present, is installed. If the
application is successfully received, it is installed as the current
application.

Chapter 3 Operating System Software 65

Send
The Send command is an S with no arguments. It causes the data
collector to start sending the data file using the YModem protocol. The
name of the data file is the same as the name last used by the BASIC
application to open it.

Time
The Time command is a T with one optional argument. If the argument
is supplied, it must be in the form: MM DD YY hh mm ss (Note: The
spaces are optional.) The data collector’s clock is changed to the given
time. With or without the argument, it responds with the current time in
the form: MM-DD-YYYY hh:mm:ss.

Reset Memory Card
The Reset Memory Card command is an X with no arguments. It
restarts the memory card system if it stops because the card was
removed.

Listen for Response from Memory Card
The Listen for Response from Memory Card command is a Y with no
arguments. It watches the data stream coming from the memory card
until it receives a carriage return. Then it captures any incoming data
until it receives a second carriage return. It times out in two seconds in
the absence of a carriage return. This special command is used for
monitoring progress when formatting a memory card. See Appendix B
for information on formatting the memory card.

Clear Data
The Clear Data (zap) command is a Z with no arguments. Since this
command clears data it must be sent three times. It causes the data file’s
size to be set to 0. Any data is destroyed.

66 Chapter 3 Operating System Software

Default.s Application

The DuraTrax, LaserLite, and LaserLite Pro are shipped with an
application called Default.s installed. The Default.s application allows
entry of any data and transfers the data as a formatted file that includes
the entry and the date and time of each entry. Vxcom or Download will
automatically load the Default.s application into a DuraTrax, LaserLite,
or LaserLite Pro if another application is not listed on the command line
along with the operating system. The Default.s application and the
Default.b source code are located on the disk accompanying this
software package. The following tables describe the variables and
sounds used by the Default.s application.

Default Application Variables

Variable Description
bar$, bar2$ Temporary string variables used at various points in the

program.

data$ 64-character string containing data that was read by unit.
Initialized to null string. Obtains value from INPUTEVT
statement.

delimiter$ Delimiter between lines of the data file. Set to <cr><lf>.

device% Parameter returned by INPUTEVT indicating type of
device that entered the input data. Returns a 1 for keyboard,
2 for laser, 12 for contact scanner, 48 for touch button, or
64 for application generated (not possible with Default.B).
Program does nothing with device% except for checking
whether user has pressed the LaserLite Pro’s ENT (Enter)
key without entering any data — in this case, entry is
ignored and unit sounds a single low beep.

display$ Character string containing characters displayed on unit.
Initialized to null string.

foo% Temporary parameter used at various points in the program.

full_display$ String containing complete input data. Used by scroll left
and scroll right routines.

high% Current size of data file in high bytes (multiples of 32768).
Used when deleting the most recent data entered.

Chapter 3 Operating System Software 67

Variable Description
info_index% Index used when cycling through display of various system

parameters.

low% Current size of data file in low bytes (modulo 32768).
Used when deleting the most recent data entered.

mode% Flag indicating mode. Set to 0 for normal, 1 for scrolling
up, and 2 for scrolling down.

mode_dn% Setting for scrolling down the file or scanning. Set to 2.

mode_norm% Setting for having scrolled up to the top or down to the
bottom of the file. Set to 0.

mode_up% Setting for scrolling up through the file. Set to 1.

nbytes% Number of bytes to delete from the data file when deleting
the most recent data entered.

ri% Loop index used when alerting user to error opening data
file.

running% Flag indicating whether to keep running program. Set to 1
(or true%) while running; set to 0 (or false%) when unit
receives I (Unlock) command at serial port.

shift% Index used to control display during scroll left and scroll
right routines.

symbol% Parameter returned by INPUTEVT indicating bar code
symbology of input data. Returns a 1 for Code 39, 2 for
UPC-A or UPC-E, 4 for Interleaved 2 of 5, 8 for Codabar,
16 for EAN, 64 for UCC Code 128, or 128 for Code 128.
The default application does nothing with this value.

68 Chapter 3 Operating System Software

Variable Description
type% Parameter returned by INPUTEVT indicating type of

input event. Returns a 1 for input, 2 for exit, 3 for
scanning a 5-space bar code that will delete the last
input), 4 for scroll up key, 5 for scroll down key, 6 for
power off switch, 7 for unexpected power loss, 8 for
ESC key, 9 for scan button pressed and released, 10 for
no memory card module found, 11 for no memory card
found, 12 for unknown memory card found, 13 memory
card ID has changed, 14 for memory card processor
interrupted, 18 for scroll left key, 19 for scroll right key,
20 for MEM key, 21 for BAT key, 22 for f1 key, 23 for
f2 key, 24 for f3 key, 25 for f4 key, or 26 for f5 key.
(The LaserLite Mx recognizes all of these events, the
LaserLite Pro recognizes events 1–9 and 18–26, and the
LaserLite and DuraTrax recognize events 1–7 and 9.)

voltage% Current battery voltage.

volt1%, volt2% Battery voltage thresholds that trigger low voltage
warnings.

Chapter 3 Operating System Software 69

Default Application Sounds

Description of Sound Code Event
Single click sound 1397, 10 A key was pressed.

Single high beep sound 1446, 250 Good input accepted
(good beep).

Single low beep sound 698, 250 Enter (ENT) key
pressed without any
data entered.

Two beeps: high, medium sound 3620, 150
sound 2349, 250

Most recent data
deleted.

Two beeps: medium, high sound 2349, 150
sound 3620, 250

Confirm that most
recent data is to be
deleted.

Three beeps: high, low, high sound 2793, 250
sound 2637, 250
sound 2793, 250

Begin default
application (startup
beep).

Three beeps: high, medium,
low

sound 1760, 250
sound 1568, 250
sound 1397, 250

Exit default
application (exit beep).

70 Chapter 3 Operating System Software

LaserLite Mx MX-DEMO Application

LaserLite Mx is shipped with the MX-DEMO application installed.
MX-DEMO allows entry of any data and stores each scan with date and
time as a single, tab-delimited record. MX-DEMO is also on the 2MB
and 4MB memory cards sold by Videx as part of the CPU boot file. The
application (MX-DEMO.S) and its source code (MX-DEMO.B) are
included with the disk accompanying the LaserLite Mx software
package.

The following table lists the memory variables and sounds used by the
MX-DEMO application.

MX-DEMO Application Variables

Variable Description
bar$, bar2$ Temporary string variables used at various points in the

program.
buffer_var$ 256-character string used capture the version string from the

card in the init_card routine.
cardreturn$ 256-character string for capturing data sent by the memory

card processor using the CARDSTATUS() function.
crdcmd$ 256-character string for building a command with parameters

to pass to CARDCMD.
cstatus$ String variable dimensioned for capturing memory card status

string. Not implemented with this version of MX-DEMO.
chandle$ File handle number of the currently open data file on the

memory card. Used as a shorthand way to switch between
files.

card_space$ String to hold number of free Kbytes on memory card. Used
in evt_mem routine.

data$ 64-character string containing data that was read by unit.
Initialized to null string. Obtains value from INPUTEVT
statement.

device% Parameter returned by INPUTEVT indicating type of device
that entered the input data. Returns a 1 for keyboard, 2 for
laser, 12 for contact scanner, 48 for touch button, or 64 for
application generated (not possible with MX-DEMO.b).
Program does nothing with device% except for checking
whether user has pressed the ENT (Enter) key without
entering any data — in this case, entry is ignored and unit
sounds a low beep.

Chapter 3 Operating System Software 71

Variable Description
dhandle$ File handle number of the data file on the memory card.

display$ Character string containing characters displayed on unit.
Initialized to null string.

foo% Temporary parameter used at various points in the program.

full_display$ String containing complete input data. Used by scroll left
and scroll right routines.

info_index% Index used when cycling through display of various system
parameters.

loopcount% Integer to keep track of the next number to generate in the
rwloop routine.

looping% Flag indicating whether to continue in the F3, number seek
routine.

mode% Flag indicating mode. Set to 0 for normal, 1 for scrolling
up, and 2 for scrolling down.

mode_dn% Setting for scrolling down the file or scanning. Set to 2.

mode_norm% Setting for having scrolled up to the top or down to the
bottom of the file. Set to 0.

mode_up% Setting for scrolling up through the file. Set to 1.

nbytes% Number of bytes to delete from the data file when deleting
the most recent data entered.

nodupes% A toggle that indicates to the input routine whether to allow
duplicate scans.

rdate$ Variable to hold and display the date field from seek record
in F3, number seek routine.

record$ 64-character string built to create a record that will be
stored on the memory card. Initialized to null string. Built
from data$ + <tab> + time + <tab> + date.

ri% Loop index used when alerting user to error opening data
file.

rtime$ Variable to hold and display the time field from seek record
in F3, number seek routine.

72 Chapter 3 Operating System Software

Variable Description
running% Flag indicating whether to keep running program. Set to 1

(or true%) while running; set to 0 (or false%) when unit
receives I (Unlock) command at serial port.

seekprompt$ String to hold the prompt for the F3, seek a number
routine.

shift% Index used to control display during scroll left and scroll
right routines.

symbol% Parameter returned by INPUTEVT indicating bar code
symbology of input data. Returns a 1 for Code 39, 2 for
UPC-A or UPC-E, 4 for Interleaved 2 of 5, 8 for Codabar,
16 for EAN, 64 for UCC Code 128, or 128 for Code 128.
The default application does nothing with this value.

timewritten$ Time and date string read back from memory card record
in the rwloop routine.

total_files$ String to hold the count of the total number of files on the
memory card.

type% Parameter returned by INPUTEVT indicating type of
input event. Returns a 1 for input, 2 for exit, 3 for scanning
a 5-space bar code that will delete the last input), 4 for
scroll up key, 5 for scroll down key, 6 for power off
switch, 7 for unexpected power loss, 8 for ESC key, 9 for
scan button pressed and released, 10 for no memory card
module found, 11 for no memory card found, 12 for
unknown memory card found, 13 memory card ID has
changed, 14 for memory card processor interrupted, 18 for
scroll left key, 19 for scroll right key, 20 for MEM key, 21
for BAT key, 22 for f1 key, 23 for f2 key, 24 for f3 key, 25
for f4 key, or 26 for f5 key. (The LaserLite Mx recognizes
all of these events, the LaserLite Pro recognizes events 1–9
and 18–26, and the LaserLite and DuraTrax recognize
events 1–7 and 9.)

vertoggle% Index used when cycling through display of operating
system version number and build date when the F4 key is
pressed.

voltage% Current battery voltage.

volt1%, volt2% Battery voltage thresholds that trigger low voltage
warnings.

Chapter 3 Operating System Software 73

MX-DEMO Application Sounds

Description of Sound Code Event
Single click sound 1397, 10 A key was pressed.
Single high beep sound 1446, 250 Good input accepted

(good beep).
Single low beep sound 698, 250 Enter key pressed without

any data entered.
Two beeps: high, medium
(deletetone:)

sound 3620, 150
sound 2349, 250

Most recent data deleted
or end rwloop routine.

Two beeps: medium, high
(questiontone:)

sound 2349, 150
sound 3620, 250

Confirm that most recent
data is to be deleted or
begin rwloop routine.

Three beeps: high, low, high sound 2793, 250
sound 2637, 250
sound 2793, 250

Begin application (startup
beep).

Three beeps: high, medium,
low

sound 1760, 250
sound 1568, 250
sound 1397, 250

Exit application (exit
beep).

Two beeps: long medium,
long low (card_error_tone:)

sound 2349, 300
sound 1885, 600

Memory card error.

74 Chapter 3 Operating System Software

Notes:

Chapter 4 Application Builder Source Template 75

Chapter 4

Application Builder Source Template

This chapter contains information on:

• = The Application Builder source code.

• = Manipulating the source code.

• = Descriptions of the code generation directives.

• = Description of the Describe.src template.

• = Description of the Timewand.src template.

76 Chapter 4 Application Builder Source Template

Application Builder BASIC Source Code

Application Builder generates BASIC source code, which can be
modified by the user after it is generated. The ability to edit this source
code can be useful for applications with exceptional requirements that
cannot be handled in the Application Builder interface.

Generate BASIC Source Code for Application

To generate the BASIC source code, use the Export Binary command
in the Application Builder’s File menu. This command saves the created
application as a BASIC source file (*.B file) and a compiled application
file (*.S file). Or, you can save only the BASIC source file by holding
down the <Ctrl> key before accessing the File menu. The command
appears as Export Source Only in the menu and only the BASIC source
file (*.B file) is saved.

Modifications can be made to the application’s BASIC source file with
any editor; however, if any changes are made to the source file it must be
recompiled into an application with Vxbasicw.exe or Vxbasic.exe. See
the Videx BASIC Manual for information on Vxbasicw.exe and
Vxbasic.exe.

Application Builder uses an extremely flexible method to generate
source code. An application is generated into source code by parsing a
Source Template file. The Source Template file is copied directly into
the source file, until it reaches a tilde (~) character. All text between ~’s
is interpreted as code generation directives. When a code generation
directive is reached, text that the directive requests is written out, and
then the source file continues copying verbatim. (Note: The software
uses Describe.src as the default Source Template file; see pages 89–101
for more information on the variables, subroutines, sounds, and plug-ins
used by Describe.src.)

Chapter 4 Application Builder Source Template 77

For example, if an application has six Input Handlers with ID numbers
from 0 to 5 (0 is the ID for the “Begin” Handler), and the Source
Template looks like this:

'*
'* dimensions
'*

dim visit_state%(~LASTSTEP~)
dim visit_step%(~LASTSTEP~)

then the generated code would look like this:

'*
'* dimensions
'*

dim visit_state%(5)
dim visit_step%(5)

Since the last Input Handler in the application has an ID of 5, the code
generation directive LASTSTEP is replaced with the number 5. All the
rest of the Source Template file is copied directly to the code.

Note: To determine the ID number of an Input Handler, start with the
“Begin” Handler as ID 0, then count from top to bottom and from left to
right. For example, Figures 4-1, 4-2, and 4-3 show three different
applications consisting of six Input Handlers and the corresponding ID
number for each Input Handler.

Figure 4-1 Example 1

78 Chapter 4 Application Builder Source Template

Figure 4-2 Example 2

Figure 4-3 Example 3

Chapter 4 Application Builder Source Template 79

Figure 4-4 shows a more complex application and the Input Handler’s
corresponding ID numbers.

Figure 4-4 Input Handler IDs

80 Chapter 4 Application Builder Source Template

Code Generation Directives

Each code generation directive is in the form:

directive = name [symbol] [“(“ argument { “,” argument }”)”]

name is the name of the directive (for example, LASTSTEP); symbol is
only used in a few directives and identifies the name of a user-defined
symbol. Symbols can be defined and then used as directives, where the
value of the symbol is substituted for the symbol name. Following the
name of the directive and optionally the symbol name, is an optional
argument list. Arguments may be other directives.

Following is a comprehensive list of all the code generation directives
that can appear in a Source Template file, with an explanation of each.

BSTRING
Takes a single text argument.
Converts text returned from some other directive into a BASIC-style
string. For example, if the text of the first action of the first handler is:

line 1
line 2

then BSTRING(HACTTEXT(0, 0)) will return the text:

"line 1" + chr$(13) + chr$(10) + "line 2"

CSTRING
Takes a single text argument.
Similar to BSTRING, but returns a C-style string. Using the example
above, the result would be line 1\r\nline 2.

Chapter 4 Application Builder Source Template 81

DEBUG
Takes a single numeric argument: a handler ID.
Notifies the source code generator that we’re about to generate code for
a handler with the given ID. The source code generator can then create a
file with debugging information for the simulator. Any time one of the
following lines of code is executed, the simulator asks Application
Builder to select the numbered Input Handler. (This directive is to
support a future simulator in Application Builder. At the time of this
release, Application Builder does not have a simulator.)

EOLN
Takes no arguments.
Returns the text of the line-ending requested in the Data Format dialog
box for the current application. Possible values are \r, \n, or \r\n.

EQ
Takes two arguments.
Returns 0 or 1 depending on whether the two arguments are equal.

ESCINPUT
Takes no arguments.
Returns non-zero if application should generate escape input on an exit
event, rather than just quitting.

FNAME
Takes one argument.
Returns the name of the numbered file. Files are numbered from 0
through LASTFILE.

82 Chapter 4 Application Builder Source Template

FOR
NEXT
FOR takes a counter name, two arguments, and an optional third
argument. NEXT takes no arguments.
The symbol name after the FOR keyword is the name of the counter
variable. The first two arguments to FOR are the first and last numbers
for the loop counter. If a third argument is given, it’s the number that
should be added to the counter each time through the loop. For example,
the Source Template:

~FOR COUNT(0, 3)~
line ~COUNT~
~NEXT~

generates the following source code:

line 0
line 1
line 2
line 3

FTYPE
Takes a single argument.
Returns the type of the numbered file. Files are numbered from
0..LASTFILE. Possible types are 0 for data file and 1 for CRF files.

HACTNUM
Takes two arguments: a handler ID and an action number.
Returns the text of the action, converted to a number.

HACTTEXT
Takes two arguments: a handler ID and an action number.
Returns the text of the action.

Chapter 4 Application Builder Source Template 83

HACTTYPE
Takes two arguments: a handler ID and an action number.
Returns the type of action. The type can be 0 for good beep, 1 for bad
beep, 2 for add data to record, 3 for add date to record, 4 for add time to
record, 5 for add CRF field to record, 6 for add text to record,
7 for plug-in, 8 for quit, 9 for shut down, or 10 for set variable.

HAUTO
Takes a single argument: a handler ID.
Returns the index of the first handler following this one that has an
automatic match criterion. Returns 0 if there is no such handler.

HDETOUR
Takes a single argument: a handler ID.
Returns true if the handler is a detour handler.

HDETOURTYPE
Takes a single argument: a handler ID.
Returns the type of detour handler it is, or -1. The type can be 0 for
return after actions, 1 for return after timeout, or 2 for return after ESC.

HDEVICE
Takes a single argument: a handler ID.
Returns a handler’s device matching property as a number. The number
is any combination of the possible devices listed under INPUTEVT in
the Videx BASIC Manual.

HELOOP
Takes a single argument: a handler ID.
Returns true if the handler ends a loop.

HFOLLOWID
Takes two arguments: a handler ID and a 0 based index.
Returns the index of the nth handler to which this handler is connected.

84 Chapter 4 Application Builder Source Template

HLASTACT
Takes a single argument: a handler ID.
Returns the index of the last action in the handler’s list of actions. (If
there are six actions it returns 5, since the actions are numbered from 0
through 5.)

HLASTFOLLOW
Takes a single argument: a handler ID.
Returns the index of the last handler to which this handler is connected.
(If it’s connected to six handlers, it returns 5, since the handlers are
indexed from 0 through 5.)

HLASTSFIELD
Takes a single argument: a handler ID.
Returns the number of fields in the handler’s display. (Actually returns
the index of the last field, one less than the number of fields.)

HMATCHFILE
Takes a single argument: a handler ID.
Returns the file number for a handler’s CRF file matching, if the handler
uses a CRF file for its match criterion.

HMATCHTEXT
Takes a single argument: a handler ID.
Returns the text of the match criterion.

HMATCHTYPE
Takes a single argument: a handler ID.
Returns the type of match criterion used by the handler. The type can be
1 for CRF file, 2 for automatic, 3 for starts with, 4 for equals, 5 for
contains, 6 for number, or 7 for TWII pattern.

HNAME
Takes one argument: a handler ID.
Returns the name of the handler.

Chapter 4 Application Builder Source Template 85

HPROMPTB
HPROMPTL
HPROMPTR
HPROMPTT
Takes one argument: a handler ID.
Returns the top, left, bottom, or right of the keyboard entry area in the
display’s screen.

HSCREEN
Takes three arguments: a handler ID, the number of rows, and the
number of columns.
Returns the upper-left corner of the screen text of the handler (which is 2
rows by 16 columns), appending “\r\n” to the end of the first row.

HSFFIELD
Takes two arguments: a handler ID and a field index.
Returns the CRF field index of a display object.

HSFLEFT
Takes two arguments: a handler ID and a field index.
Returns the index of the leftmost character in the screen text where the
display field should go, assuming that each line of the screen text ends
with a carriage return and line feed.

HSFLEN
Takes two arguments: a handler ID and a field index.
Returns the width of the display field.

HSFSTEP
Takes two arguments: a handler ID and a field index.
Returns the step from which the display field should get its data.

HSFTEXT
Takes two arguments: a handler ID and a field index.
Returns the text of the display field.

86 Chapter 4 Application Builder Source Template

HSFTYPE
Takes two arguments: a handler ID and a field index.
Returns the type of the display field. The type can be 6 for input, 7 for
date, 8 for time, 9 for reference field, 10 for text, or 11 for plug-in.

HSLOOP
Takes one argument: a handler ID.
Returns true if the handler starts a loop.

HSTEP
Takes one argument: a handler ID.
Returns the handler’s step.

HSYMBOL
Takes one argument: a handler ID.
Returns a handler’s symbology matching property. The number is any
combination of the possible symbology codes listed under INPUTEVT
in the Videx BASIC Manual.

IF
ELSEIF
ELSE
ENDIF
IF and ELSEIF take one argument: a Boolean value. ELSE and ENDIF
take no arguments.
Conditionally includes parts of the Source Template.

LASTFILE
Takes no arguments.
Returns the index of the last file used by the application. By convention,
the data file is file number 0 and reference files are numbered from
1...LASTFILE.

Chapter 4 Application Builder Source Template 87

LASTHANDLER
Takes no arguments.
Returns the index of the last handler in the application. Handlers are
numbered from left to right and top to bottom, with the “Begin” Handler
being number 0.

LASTSTEP
Takes no arguments.
Returns the index of the last step in the application. The “Begin”
Handler is in step 0 and subsequent steps are numbered from
1..LASTSTEP.

NE
Takes two arguments.
Returns 0 or 1 depending on whether the two arguments are equal.

PROGRESS
PROGRESSSTART
PROGRESSSTART takes one argument: the number of stops.
PROGRESS takes no arguments.
PROGRESSSTART allows the code generation application to display a
progress bar with n+1 locations on the bar. PROGRESS causes the code
generation application to increment the progress bar to the next location.

QUOTES
Takes no arguments.
Returns a value indicating the usage for quotes in the data file. Possible
values are 0 for none, 1 for around fields, or 2 for around records.

SEARCHDEPTH
Takes no arguments.
Returns the depth required for the deepest loop search. This basically
returns the longest possible path through the application, returning the
number of handlers in that path.

88 Chapter 4 Application Builder Source Template

SEPARATOR
Takes no arguments.
Returns the character to be used as a field separator in the data file.
Possible values are 0 for none, 1 for tab, 2 for comma, 3 for space, or 4
for end of line.

SET
Takes a symbol and one argument.
Creates a new symbol in the symbol table, and assigns it the value in the
argument. The symbol can subsequently be used as a code generation
directive, where the symbol name will be replaced by its value. For
example, the Source Template:

~SET FOO(321)~
line 1
~FOO~
line 2

would generate the following source code:

line 1
321
line 2

The only other way to create symbols is using the FOR directive, which
creates a temporary symbol for the duration of the FOR loop.

Chapter 4 Application Builder Source Template 89

Describe.src

Describe.src is the template that Application Builder uses to generate
BASIC source code. You can change the way Application Builder
generates code by editing Describe.src. Describe.src should be kept in
the same folder as Appbuild.exe.

The heart of Describe.src is the event loop, and the heart of the event
loop is the call to INPUTEVT. One of the parameters returned by
INPUTEVT is evt_type%. See the Videx BASIC Manual for more
information on the INPUTEVT statement.

The Describe.src variables are described in the tables on pages 89–94.
The Describe.src subroutines are described on pages 95–98 and the
sounds used by Describe.src are described on page 99. The table on
pages 100–101 is a list of commonly used plug-ins.

Describe.src Variables

Following is a list of variables used in Describe.src. (Note: This list
does not include variables generated by code generation directives.)

Variable Description
accepts% Set to state number of accepting handler if input is

accepted. Set to zero if input is not accepted.
(Remember to include the ‘s’ in accepts%.)

archive_data$() Records data for each step in the design. Indexed
by step.

archive_date$() Records date for each step in the design. Indexed
by step.

archive_time$() Records time for each step in the design. Indexed
by step.

archive_val1$() Records first CRF field for each step in the design.
Indexed by step.

archive_val2$() Records second CRF field for each step in the
design. Indexed by step.

90 Chapter 4 Application Builder Source Template

Variable Description
archive_val3$() Records third CRF field for each step in the design.

Indexed by step.
bad_dur% Duration of “low” beep in milliseconds (ms). Set to

400.
bad_frq% Frequency of “low” beep in Hertz (Hz). Set to 723.
bar$, bar2$ Temporary string variable used at various points in

the program.
cstate% Current state.
cstep% Current step.
display$ Current string to display on the screen.
display_flag% Counter which cycles from 0 to 5 and determines

what piece of system information to display when
the scroll down key is pressed.

eoln$ Delimiter used at end-of-line in data file. Set to
<cr><lf>.

evt_data$ Input data most recently returned by INPUTEVT.
evt_device% Device most recently returned by INPUTEVT.

Returns 1 for keyboard, 2 for laser, 12 for contact
scanner, 48 for touch button, 63 for automatically
generated input, or 64 for application generated
input (mock <<Escape>> input).

evt_symbol% Bar code symbology of input most recently returned
by INPUTEVT. Returns 1 for USS-39, 2 for UPC-
A or UPC-E, 4 for USS-I2/5, 8 for Codabar, 16 for
EAN, 64 for UCC Code 128, 128 for USS-128, 159
for mock input event (software generated
<<Escape>> input or automatically generated
input), or -1 if <f1> or <f2> key is pressed on the
LaserLite Pro or LaserLite Mx.

Chapter 4 Application Builder Source Template 91

Variable Description
evt_type% Type of event most recently returned by

INPUTEVT. Returns 1 for input, 2 for exit, 3 for
scanning a five space bar code that deletes last input,
4 for scroll up, 5 for scroll down, 6 for power off, 7
for unexpected power loss detected, 8 for ESC key, 9
for scan key pressed and released, 10 for LaserLite
Mx no memory card module found, 11 for LaserLite
Mx no memory card found, 12 for LaserLite Mx
unknown memory card found, 13 for LaserLite Mx
memory card ID has changed, 14 for LaserLite Mx
memory card processor interrupted, 18 for scroll left,
19 for scroll right, 20 for MEM key, 21 for BAT key,
22 for f1 key, 23 for f2 key, 24 for f3 key, 25 for f4
key, or 26 for f5 key.

field_del$ Field delimiter returned by Application Builder. Can
be none, tab, comma, space, or line-ending returned
by Application Builder (\r, \n, or \r\n).

field_quote$ Contains quotes if fields are to be quoted; otherwise
empty string.

foo% Temporary integer variable used at various points in
the program.

full_display$ Contains complete string to be displayed. Used by
the scroll left and scroll right routines.

good_dur% Duration of “good” beep in ms. Set to 250.
good_frq% Frequency of “good” beep in Hz. Set to 1446.
high% Total size (in bytes) of data file in multiples of

32,768 (high bytes). Used in subroutine truncate
when removing bytes from the data file.

key_dur% Duration of click in ms when entering keypad data.
Set to 10.

key_frq% Frequency of click when entering keypad data.
Set to 1397.

92 Chapter 4 Application Builder Source Template

Variable Description
loop_index% Index of the state in path%() that immediately

precedes the accepting state. Generated by
subroutine loop_search, which searches for a
handler to accept the current input.

loop_state% Temporary integer variable used in subroutine
loop_search when testing whether states in path%()
will accept the current input.

low% Total size (in bytes) of data file modulo 32768 (low
bytes). Used in subroutine truncate when removing
bytes from the data file.

low_voltage% Voltage at which unit gives warning message. Set at
45 for 4.5 volts; do not use less than 35.

max_code% Maximum length of user input. Maximum is 64
characters; greater values are not recognized by the
operating system.

n_times% Used in kill_time subroutine together with
x_delay% to determine length of delay when
displaying messages to user.

nbytes% Number of bytes in current record under
construction.

old_state% State immediately preceding current state. Used
when deleting data from the data file.

path%() Stack of states containing handlers that have been
visited. (Each handler has a unique state number.
The “Begin” Handler is state 0 and step 0. In
general, if there is any branching in an application,
the number of states is greater than the number of
steps.)

path_top% Index of path% corresponding to top of stack.
Initialized to -1 (pointing below the bottom of the
stack). The “Begin” Handler corresponds to
path_top%=0.

Chapter 4 Application Builder Source Template 93

Variable Description
pop_count% Number of states to pop off the stack.
prompt_b% Defines the bottom of the screen rectangle where

data entry occurs. Used by INPUTEVT.
prompt_l% Defines the left side of the screen rectangle where

data entry occurs. Used by INPUTEVT.
prompt_r% Defines the right side of the screen rectangle

where data entry occurs. Used by INPUTEVT.
prompt_t% Defines the top of the screen rectangle where data

entry occurs. Used by INPUTEVT.
push_state% State number of the handler to be pushed onto the

path% stack. Initialized to zero when pushing the
“Begin” Handler onto the stack.

record$ Current record. Maximum length of a record is
128 characters.

record_end$ Contains string to be written at the end of each
record in the data file.

record_len%() Length of the record at each state on the stack.
Used to help truncate previous record when user
doesn’t loop all the way back to the first step.

record_quote$ Contains quotes if records are to be quoted;
otherwise empty string.

ref_error_name$ Name of the reference file that results in an error
condition when opening.

return_top% Records state number at top of stack just before
pushing a detour. Set to -1 when not stepping to a
detour handler.

running% Set to true% (1) while running application. Set to
false% (0) when exiting application (Unlock
command received by INPUTEVT).

scroll_mode% Current scroll status. Can be scrolling_none%,
scrolling_up%, scrolling_down%, or
scrolling_limit%.

94 Chapter 4 Application Builder Source Template

Variable Description
scrolling_down% Setting for scrolling down through the data file.

Set to 3.
scrolling_limit% Setting for having scrolled to the top of the data

file. Set to 4.
scrolling_none% Setting for not scrolling. Set to 0.
scrolling_up% Setting for scrolling up through the data file. Set

to 2.
shift% Used in scroll left and scroll right routines to

determine which portion of full_display$ is to
appear in the display.

state_auto%() Indexed by state. Contains true if that state has an
automatic matching handler following it.

state_eloop%() Indexed by state. Contains true if state ends loop.
state_step%() Indexed by state. Contains the state’s step.
token_del$ Quote + field_del$ + line-ending returned by

Application Builder (\r, \n, or \r\n).
voltage% Voltage (saved from the last time the voltage was

read). The user gets a low-voltage warning
whenever the voltage changes and is below
low_voltage% (4.5 volts). Threshold voltage is
3.5 volts.

x_delay% Used in kill_time subroutine together with
n_times% to determine length of delay when
displaying messages to user.

Chapter 4 Application Builder Source Template 95

Describe.src Subroutines

Following is a list of subroutines used in Describe.src.

Subroutine Purpose
acceptx Determines whether state x accepts current input.

This routine is automatically generated for each
state.

actionx Performs actions for state x. This routine is
automatically generated for each state.

bad_tone Sounds two tones indicating the data is invalid.
check_voltage Checks the battery voltage. If it is less than 4.5

volts and if it has changed since the last time it
was checked, warns the user.

d_findx Attempts to find a detour handler to step to from
state x. This routine is automatically generated for
each state.

delete_record Deletes the last record in the data file after
warning the user.

deletetone Sounds two tones indicating that the data was
deleted from the data file.

dispatch_display Given the current value of state%, dispatches to
the proper display routine.

display_info When scrolling down and at the end of the file,
cyclically displays battery voltage, time, date, OS
version, ID, and available memory.

displayx Prepares display for state x. This routine is
automatically generated for each state.

evt_bat Responds to a battery event (generated by
pressing the BAT key on the LaserLite Mx or
LaserLite Pro) by clicking and displaying the
battery voltage.

96 Chapter 4 Application Builder Source Template

Subroutine Purpose
evt_delete Responds to a delete event or to pressing the f5 key

on the LaserLite Mx or LaserLite Pro, by deleting
the most recently entered data (after warning the
user). If already at the beginning of the record,
delete the previous record of the data file (after
warning the user).

evt_down Responds to the scroll-down key by clicking and
then scrolling down, first through the data file, then
the current record, and then cyclically displaying
the battery voltage, time, date, ID, OS version, and
remaining memory.

evt_esc Responds to an escape event, generated by pressing
the ESC key on the LaserLite Mx or LaserLite Pro.
Clicks, and then, if in a detour handler, returns to a
normal handler.

evt_f1 Responds to a press of the f1 key by simulating a
user input of <<F1>>.

evt_f2 Responds to a press of the f2 key by simulating a
user input of <<F2>>.

evt_f3 Responds to a press of the f3 key by simulating a
user input of <<F3>>.

evt_f4 Responds to a press of the f4 key by displaying the
version of the operating system in the unit.

evt_input Responds to an input event by searching for a state
to accept the current input.

evt_left Responds to the scroll-left key by clicking and then
scrolling to the left to display a long entry.

evt_mem Responds to a memory event (generated by pressing
the MEM key on the LaserLite Mx or the LaserLite
Pro) by clicking and displaying free memory.

evt_none Does nothing. Branched to from INPUTEVT if an
event type occurs that requires no action to be
performed (event types 0, 9–14).

Chapter 4 Application Builder Source Template 97

Subroutine Purpose
evt_pfail Responds to an unexpected loss of power (power

lost when unit was not asleep). Displays a warning
message, makes a ringing sound, and puts unit to
sleep.

evt_right Responds to the scroll-right key by clicking and
then scrolling to the right to display a long entry.

evt_switch Responds to a flip of the lock switch to the OFF
position by turning off the display and putting the
unit to sleep.

evt_unlock Responds to an Unlock command by either quitting
the application or by generating a mock
<<ESCAPE>> input.

evt_up Responds to the scroll-up key by clicking and then
scrolling up, first through the current record, then
the data file.

file_error Displays a message alerting user to error accessing
the data file, rings, and puts the unit to sleep.

finishx Performs housekeeping when stepping to state x.
This routine is automatically generated for each
state.

kill_time Delays program operation while information is
being displayed.

l_findx Attempts to find a handler to loop back to from state
x. This routine is automatically generated for each
state.

ld_findx Returns from state x (which is a detour handler) to
previous state in path stack. This routine is
automatically generated for each state.

loop_search Searches the path%() stack for a handler which
accepts the current input.

loop_to Loops the application back to the accepting handler
found by loop_search.

98 Chapter 4 Application Builder Source Template

Subroutine Purpose
namex Sets display to show name of state x. This routine is

automatically generated for each state.
pop Pops pop_count% states off the stack. Truncates the

current record and sets the display.
push Pushes a state onto the path%() stack. The current

input is stored in the archives, its actions are
performed, and assignments are made to display$.

questiontone Sounds two tones when asking user to confirm that
data is to be deleted from the data file.

ref_error Displays a message alerting user to error opening a
CRF file, rings, and puts unit to sleep.

return_to Returns from a detour handler to a normal handler.
ring Makes a ringing sound to alert the user to an error.
s_deletex Deletes the information written to the data file by

state x.
s_findx Attempts to find a handler to step forward to from

state x. This routine is automatically generated for
each state.

truncate Removes nbytes% bytes from data file.

Chapter 4 Application Builder Source Template 99

Describe.src Sounds

Following is a list of sounds used in Describe.src.

Sound Code Events
Three beeps: high,
low, high

sound 2793, 250
sound 2637, 250
sound 2793, 250

Begin application (startup
beep).

Three beeps: high,
medium, low

sound 1760, 250
sound 1568, 250
sound 1397, 250

Quit application (exit beep).

Two beeps:
medium, high

sound 2349, 150
sound 3620, 250

Ask user to confirm that data
is to be deleted from the data
file.

Two beeps: high,
medium

sound 3620, 150
sound 2349, 250

Data is being deleted from
the data file.

Two beeps: low,
very low

sound 723, 500
sound 578, 600

No state will accept the input
data (invalid data).

Single high beep sound 2349, 250 1. User cancels attempt to
delete data. 2. User
attempted to delete data, but
data file was empty.

Single medium
beep

sound 1446, 250 Input accepted by a handler
(and user requested a “beep”
action).

Single low beep sound 723, 400 Input accepted by a handler
(and user requested a “low
beep” action).

Single click sound 1397, 10 A key was pressed.
Ring for ri%=1 to 10

sound 2093, 50
sound 2794, 50
next ri%

1. Power lost when unit was
not asleep. 2. Low-battery
voltage detected. 3. Error
accessing the data file or a
CRF file.

100 Chapter 4 Application Builder Source Template

Plug-ins

Plug-ins are BASIC source code that is inserted into the application by
Application Builder. Plug-ins provide additional features when creating
applications, but they do require familiarity with BASIC programming
and the Describe.src source code template.

Plug-in Function
if condition then accepts% = false% If condition is true, the

current input is rejected.
if condition then accepts% = true% If condition is true, the

current input is accepted.
evt_data$ = expression

Set input data to expression.
(Requires that the Input
Device property include
Software.)

gosub evt_delete Delete last scan.
gosub ring Unit makes a ringing sound.
volt1% = variable% Change battery voltage

warning message trigger to
variable%. Default is 48,
corresponding to 4.8 volts.

print #0, expression Write expression to data file.
running% = false% Quit application.
sound frequency%, duration%

Unit generates a sound at
frequency% Hz for a duration
of duration% milliseconds.
The frequency% must be
between 50–8000 and
duration% must be between
1–2000.

Chapter 4 Application Builder Source Template 101

Plug-in Function
variable$ = environ$(0) Place current battery voltage in

variable$.
variable$ = environ$(1) Place available RAM in

variable$.
variable$ = environ$(2) Place operating system version

in variable$.
variable$ = environ$(3) Place unit’s ID in variable$.

Timewand.src

Timewand.src is a version of the template similar to Describe.src,
except Timewand.src generates a TimeWand II-style data file. As a
result, it handles deletion and scrolling somewhat differently.

To generate a TimeWand I-style data file instead of a TimeWand II file,
remove all of the lines between "TWII BEGIN" and "TWII END" in the
Timewand.src source file before renaming it. (Note: You will lose the
ability to delete scans.)

102 Chapter 4 Application Builder Source Template

Notes:

Chapter 5 LaserLite Mx Memory Card Data Management 103

Chapter 5

LaserLite Mx Memory Card
Data Management

This chapter contains information on:

• = The capabilities of the memory card.

• = LaserLite Mx memory card command set.

• = Transferring files between the memory card and the computer.

• = Booting from the memory card.

• = Sending cross-reference files to the memory card.

• = Transferring data from the memory card.

• = Creating and using cross-reference files.

• = Opening a memory card file.

• = Changing records in a memory card file.

• = Handling errors.

104 Chapter 5 LaserLite Mx Memory Card Data Management

Memory Card Capabilities

You can perform the following operations with a LaserLite Mx and a
memory card:

• = Create, open, close, and delete files. Four different types of files are

supported: identification (D), boot (B), sequential (S), and indexed
(I/H). (See the table on page 136 for descriptions of the different
file types.)

• = Add, delete, and change records.

• = Search records based on the key field.

• = Move pointer within a file.

• = Seek information based on a given string.

• = Reorganize space.

• = List memory card file information and status report.

• = Boot main CPU

You can use either the Vxcom (Windows 95/98/NT) or Download (DOS)
communications program’s commands file to transfer files to and from
the memory card.

Chapter 5 LaserLite Mx Memory Card Data Management 105

LaserLite Mx Memory Card Command Set

Operating System P Command–Pass to Memory Card

The P command is the Pass to Memory Card command for the
LaserLite Mx operating system software command line. The P command
allows the communications program to directly control interaction with
the memory card file system.

Syntax:
 P <command string>

The P command sends the accompanying command string to the
memory card and returns the response as received from the memory
card. The operating system can generate a special error, -2, to indicate
that a memory card was not found. Otherwise, it returns the response
exactly as received from the memory card for each command sent.

Both the commands file R command (described on pages 106 and 133)
and S command (described on pages 106 and 134) use a series of P
commands to communicate with the memory card. On the following
page are descriptions that show how the P command interprets the R and
S commands.

106 Chapter 5 LaserLite Mx Memory Card Data Management

R Command (Commands File) Actions:

1. The communications program sends a file to the memory card by
issuing a series of P commands:

• = It begins with the open (O) command:
P o <modulus> <file type> <filename>

• = It then writes records using the append (A) command:
P a <data strings>

2. The communications program processes and reports any errors
generated by the memory card processor or the operating system.

S Command (Commands File) Actions:

1. The communications program retrieves a file from the memory
card by issuing the following series of P commands:

• = It opens the file with the open (O) command:
P o <modulus> <file type> <filename>

• = Then the communications program moves the pointer to the
top of the file with the move pointer (M) command and
retrieves the first record:

P m &FFFF R

• = It then continues to issue M commands:

P m 1 F or P m 1024 F

until it reaches the end of the file.

2. The communications program processes and reports any errors
generated by the memory card processor or the operating system.

Chapter 5 LaserLite Mx Memory Card Data Management 107

The P command uses the same command strings that are used by the
Videx BASIC CARDCMD statement’s command_str$ parameter. The
following table gives a brief description of these commands along with
the page number where you can find complete information about the
command. Parameters within { } are required; parameters within [] are
optional.

Command String Description
A [hash value] {record} Add a new record to the memory card’s

open file. See page 109 for more
information.

C {F/S/I} [status bytes] List or send the card’s file management
report or status information. See pages
110–113 for more information.

D {file type} {filename}
D {file handle}
D {file handle} [file type] [filename]

Delete a file from the memory card.
Delete an existing file.
Rename an existing file.
See page 114 for more information.

F [hash value] [key field]

F

Search for a record in the memory
card’s open file with the given key field
and send it to the host.
Search for next record with same hash
value or key field. See page 115 for
more information.

H [hash value] [key field]

H

Delete a record from the memory card’s
open file with the given key field.
Delete next record with same hash value
and key field. See page 116 for more
information.

K &1092 Remove all deleted files from the
memory card. See page 117 for more
information.

M {# of records/bytes} {F/R}
M
M H {file handle}

Move the pointer within the open file.
Show the current record.
Delete the record at the move pointer.
See pages 118–120 for more
information.

108 Chapter 5 LaserLite Mx Memory Card Data Management

command_str$ Brief Description
N [param1] Format new memory card or determine

the memory card ID. See page 121 for
more information.

O [modulus] {file type} {filename}

O {file handle}

Open a new or existing file on the
memory card.
Open an existing file. See pages 122–
123 for more information.

Q {file type} {filename} Calculate the CRC of a file and send it
back to the host. See page 124 for more
information.

S {field #/bytes} {F/R} {string} Perform search within the card’s open
file. See page 125 for more information.

V Read the memory card’s program
version. See page 126 for more
information.

Y Repeat the last status byte or data. See
page 127 for more information.

Z Puts the data collector to sleep. See
page 127 for more information.

Chapter 5 LaserLite Mx Memory Card Data Management 109

The commands are described in detail in the following sections.

A [hash value] {record}

Adds data to the memory card’s open file (see the O command on pages
122–123 to open a file). For an indexed (I) file, the card module first
calculates the hash entry based on the key field of the record and then
looks up the hash table for a pointer. If no pointer is found, it is the first
record for the entry. The record is saved as the current end-of-file and
the pointer at the hash table is set. If a pointer is found, a collision
occurred for this entry. The DMS traverses the list and finds the last
record with the same hash value. The new record is saved as the current
end-of-file and the pointer is set at the last record.

For type I files, the hash value is calculated internally. You can have
more than one record with the same key field. The key field is delimited
from other fields with a tab character (09 hex). For type H files, the hash
value must also be passed with the command. For type S/D/B files, the A
command appends {record} as data.

Example: Add a record to the open indexed file test1:
 P a "This is a record"

Returns:

 00 Record added.

Successful return values:

00

Possible error codes that can be returned from this command:

01, 03, 04, 10, 32, 34, 39, 40, 41, 42, 53, 61, 63 (See pages 128–
129 for a description of the error codes.)

110 Chapter 5 LaserLite Mx Memory Card Data Management

C {F/S/I} [status bytes]
Lists the memory card’s file management or status information or sends
a setup configuration to the memory card processor.

 F - List the file management report.
 S - List the status report.
 I - Send the report to the memory card processor to update.

F - List the file management report

The file management report is sent out first, if asked, followed by
individual file information. The filenames are enclosed in quotation
marks. The file type is sent out as a hexadecimal value, preceded by an
ampersand. All hexadecimal values returned by the memory card begin
with an ampersand (&) character. A space character is used to separate
hexadecimal from ASCII, or different parts of the listing (for example, a
space between file 1 and file 2). The following tables show the order of
the data format. A sample of the file management report is shown on the
following page.

File Management Report Format:

bytes 1–2 Total space of the card (Kbytes).
bytes 3–4 Bad space (Kbytes).
bytes 5–6 Available space (Kbytes).
bytes 7 Number of files (including deleted files).
bytes 8–b1 1st valid file information.
bytes b2–b3 2nd valid file information.
bytes b4–b5 3rd valid file information.
...

Individual File Information:

byte 1 File serial number in the memory card.
byte 2 File status.
byte 3 File type.
bytes 4–5 File table size.
bytes 6–7 The file size (Kbytes).
bytes 8–16 The filename (variable length from 1–18 bytes).

Chapter 5 LaserLite Mx Memory Card Data Management 111

Example: Request file management report:
P c f

Returns:
 &07980000076805 &01FF44FFFF0004 "card1"

&02FF42FFFF0014 "CRD" &030049089B000C
"data.txt" &03FF49089B000C "olddata.txt"
&04FF49089B000C "data.txt"

Note: The F command in a commands file issues the C F command to
the memory card. It creates the following report on the information
above:

Memory Card File and Memory Status Report

Total Space: 1944 Kbytes
Bad Space: 0 Kbytes
Available Space: 1896 Kbytes
Retrievable Space: 12 Kbytes

Number of deleted files: 1
Number of valid files: 4

File Number Deleted Type Table Size Kbytes Name
1 No D n/a 4 "card1"
2 No B n/a 20 "CRD"
3 Yes I 2203 12 "data.txt"
3 No I 2203 12 "olddata.txt"
4 No I 2203 12 "data.txt"

112 Chapter 5 LaserLite Mx Memory Card Data Management

S - List the status report

At any given point in time, the LaserLite Mx can have an open file and a
pointer to data or to a record within that file. When power is removed
from the memory card module during sleep, the data management system
loses track of this information. The status report contains the information
needed to restore the memory card system to a previous state.

Status Report Format:

byte 1 Last command before the C command.
bytes 2–6 The move pointer: block # (2 bytes), page number (1 byte),

column address (2 bytes).
byte 7 File type.
bytes 8–b1 Opened filename (variable length).

Example: Request status report:
 P c s

Returns:
 &4F001503006A04

Chapter 5 LaserLite Mx Memory Card Data Management 113

I - Send the status report to the memory card processor to update

The status string retrieved by the C S command may be sent to the
memory card processor with the C I command. The LaserLite Mx
operating system and BASIC language automatically update the state of
the memory card in its sleep/wake routines. Normally, you will not be
concerned with updating status, except when developing complex
operations using multiple files.

Example: Restore the status after waking from sleep:

 P c I &4F001503006A04

Returns:

 00 Previous status restored.

Successful return values:

File management report (for C F); status report (for C S);
00 (for C I).

Possible error codes that can be returned from this command:

01, 03, 04, 10, 31, 51, 52, 63 (See pages 128–129 for a
description of the error codes.)

114 Chapter 5 LaserLite Mx Memory Card Data Management

D [modulus] {file type} {filename}

 or

D {file handle}

 or

D {file handle} {file type} {new filename}

Deletes or renames a file on the memory card. To delete a file, list the
file type (indexed (I or H), sequential (S), identification (D), or boot (B))
and filename of the file to delete. The filename can have up to 18 bytes,
or you can use the file handle number (if known from a previous O
command).

To rename a file, you must refer to the file by the file handle number and
file type, and pass it the new filename.

Example 1: Delete an indexed file with filename data.txt:
 P d I "data.txt"

Returns:

 00 File deleted successfully.

Example 2: Rename an indexed file with filename data.txt and file
handle 03 to olddata.txt:
 P d 03 I "olddata.txt"

Returns:

 00 File renamed successfully.

Successful return values:

 00

Possible error codes that can be returned from this command:

01, 03, 04, 09, 10, 31, 33, 40, 63, 65 (See pages 128–129 for a
description of the error codes.)

Chapter 5 LaserLite Mx Memory Card Data Management 115

F [hash value] [key field]

 or
F

Searches for a record with the given key field in the memory card’s open
file and sends it to the host. This command only functions with file types
I and H. When a key field is not provided, and the last command was an
H or an F command with a key field, it tries to read the next record with
the same key field as was used in the last H command. For example, to
read multiple records with the same key field, the following commands
can be used:

Assuming there are three records with the key field "ABCDEFG" in an
indexed file, then:

 P f "ABCDEFG": reads the first record;
 P f: reads the second record;
 P h: deletes the third record.

To read all of the records in an indexed file with the same hash value,
the following commands can be used:

 P f [key field]: first record in the chain;
 P f: second record in the chain.

Example: Find a record in the open indexed file test1:
 P f "abc"

Returns:
 "abc" <field2> <field3> Record found.

 35 No records match the find request.

Successful return values:

A record.

Possible error codes that can be returned from this command:

01, 03, 04, 06, 08, 10, 32, 35, 53, 63 (See pages 128–129 for a
description of the error codes.)

116 Chapter 5 LaserLite Mx Memory Card Data Management

H [hash value] [key field]

 or

H

Deletes a record with the given key field from the memory card’s open
file. This command only functions with file types I and H. For an
indexed file, the program goes through the hash table, finds the record,
and sets the record status bit to 0. It does not change the pointer or erase
the record. When a key field is not provided, and the last command is an
F or an H command with a key field, it tries to delete the next record
with the same key field as in the last H command.

Example: Delete a record from the open indexed file test1:
 P h "abc"

Returns:

 0 Record deleted.

Successful return values:

00

Possible error codes that can be returned from this command:

01, 03, 04, 06, 08, 10, 32, 35, 39, 40, 53, 63, 65 (See pages 128–
129 for a description of the error codes.)

Chapter 5 LaserLite Mx Memory Card Data Management 117

K &1092

Removes deleted files from the memory card. This command copies the
file management report from the control blocks to other blocks, changes
content, erases the control blocks, and copies the information back to the
control blocks. Do not interrupt the processor (power down or reset)
during the operation or you could lose file management information.
This command should only be used after important data has been
transferred from the memory card to the computer.

Example: Clean up the card:
 P k &1092

Returns:

 00 Deleted files removed from the memory card.

Successful return values:

00

Possible error codes that can be returned from this command:

01, 03, 04, 10, 40, 61, 62, 63, 65, 67, 68 (See pages 128–129 for
a description of the error codes.)

118 Chapter 5 LaserLite Mx Memory Card Data Management

M {number of records/bytes} {F/R}
 or

M
 or

M H {file handle}

Moves the pointer within the memory card’s open file. For indexed (I or
H) files, this command moves the pointer forward (F) or backward (R) a
certain number of records within the open file, and sends out the current
record that the pointer is pointing to. When number of records = FFFF,
the pointer is moved to the end-of-file (F) or the beginning-of-file (R).
For sequential (S) and identification (D) files, the number is in bytes,
and the program sends out 256 bytes. When the number of bytes = 0 (or
is omitted), the program sends out the current record or 256 bytes, but
does not move the pointer.

When a file is opened, the move pointer is set at the end-of-file. An F or
an H command sets the move pointer to that record.

Example 1: Move forward 128K records from current position in open
indexed file test1:
 P m &020000 F

Returns:
 "abcdefg" <field 2> <field 3> <…>

 Record found; data reported.

 36 End-of-file encountered.

Chapter 5 LaserLite Mx Memory Card Data Management 119

Example 2: Move to beginning of the open indexed file test1:
 P m &FFFF R

Returns:

 "abcdefg data" Record found, data reported.

 23 There is no data in the file.

Example 3: Delete the record at the move pointer:
 P m h

Returns:

 00 Record deleted.

Successful return values:

A record or 256 bytes of binary data.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 23, 36, 37, 39, 40, 53, 63, 65 (See pages 128–129
for a description of the error codes.)

120 Chapter 5 LaserLite Mx Memory Card Data Management

The Move Pointer

The M card command moves a pointer within an open data file. The
following table indicates the location of the move pointer under different
circumstances.

Condition Location for file types
I/H (indexed files)

Location for file types
B/D/S (sequential files)

Open file Last record. Last 256 bytes.

Append record Last record. Last 256 bytes.

Scrolling Current record. Current 256 bytes.

Closed file Invalid. Invalid.

Open file with no
data

“No data condition”
(error 23).

“No data condition”
(error 23).

Delete record with
the H command or
M H command

At the deleted record.
Must issue another M
command before issuing
an M H command. The
M command then moves
to the next record in the
data file. If there is not a
valid next record, then
the move pointer moves
to the previous record.

Not applicable.

F command At the found record, or if
not found, at the bottom
of the data file.

Not applicable.

S command At the found record, or if
not found, at the bottom
of the data file.

Not applicable.

Chapter 5 LaserLite Mx Memory Card Data Management 121

N [param1]

Formats the memory card. N, by itself, closes any open files and restarts
the memory card program. It also locks some of the physical functions,
so the IRAM, XRAM, and memory card contents cannot be changed
accidentally by using low-level routines. Issuing the N command without
a parameter, returns the ID of the memory card.

The parameter &0129 unlocks low-level physical functions permitting
writing directly to the card module’s XRAM memory and formatting the
memory card.

The parameter &1092 erases the entire card and formats the card, if it is
not formatted.

Example 1: Format memory card:
 P n &1092
Returns:
 0 Memory card formatted.

Example 2: Determine memory card ID:
 P n
Returns:
 "092612456" The card ID name, card module formatted.

Successful return values:

 ID of the memory card.

Possible error codes that can be returned from this command:

01, 03, 04, 07, 10, 22, 63, 65 (See pages 128–129 for a
description of the error codes.)

122 Chapter 5 LaserLite Mx Memory Card Data Management

O [modulus] {file type} {filename}

 or

O {file handle}

Opens an existing or a new file on the memory card. To open an existing
file, only the file type (indexed (I/H), sequential (S), identification (D),
or boot (B)) and the filename is needed, or you can use the file handle
number (if known from a previous O command). The modulus (number
of hash table entries) can be zero. The modulus can be omitted for
sequential, identification, or boot files; for indexed or hashed files the
modulus can be from 1–65535. (Note: See pages 141–142 for
information on the modulus.) The filename can have up to 18 bytes.
When a file is opened, any following operations are directed to the open
file; any previously opened files are closed. When the module is
powered up, the firmware boots the memory card and starts to run the
DMS program from the XRAM. If successful, the O command returns
the file handle number of the opened file.

One memory card ID file can be opened per card. The filename is used
as the card ID, and any contents can be written to the file as a sequential
file. The ID can be found by writing an ID file to the memory card with
any name. It can also be found by issuing an N command (see page 121)
without a parameter.

Chapter 5 LaserLite Mx Memory Card Data Management 123

Example 1: Open an indexed file with table size 2203 and filename
test1:
 P o 2203 I "test1"

or
 P o &089B I "test1"

or
 P o 03

Returns:

 &03 File opened successfully; 03 hexadecimal is file handle.

 39 Memory full.

Example 2: Open the ID file with the filename Videx:
 P o D "Videx"

Returns:

 &01 ID file created successfully, with Videx as the
 card ID and assigned to file handle 01.

 "092612456" An ID file could not be created because an ID
 file already exists with 092612456 as the real
 card ID.

Successful return values:

File handle number or card ID name.

Possible error codes that can be returned from this command:

01, 03, 04, 07, 10, 31, 33, 39, 40, 51, 52, 63 (See pages 128–129
for a description of the error codes.)

124 Chapter 5 LaserLite Mx Memory Card Data Management

Q {file type} {filename}

Calculates the CRC of a file and send it back to the host. This command
is useful when sending a file to the memory card from the computer.
Vxcom automatically calls this command when sending files to the
memory card.

Example: Check the CRC of a boot file:
 P q B "CPU"

Returns:

 &B001 The 16-bit CRC of the boot file (boot files on
the LaserLite Mx system must always return a
CRC of &B001).

Successful return values:

16 bit CRC of the file.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 31, 32, 51, 52, 63 (See pages 128–129 for a
description of the error codes.)

Chapter 5 LaserLite Mx Memory Card Data Management 125

S {field number/bytes} {F/R} {string}

Performs a search within the memory card’s open file. For an indexed
file (type I or H), this command searches for a record within the given
number of records with the given string. The field number limits the
search at the particular field. A zero field number forces the program to
search through the entire record for the given string. The key field is the
number one field. The field number is the fourth byte of the first
parameter and the number of records that were searched is given as the
three least significant bytes of the first parameter.

For a binary file, this command searches through the number of bytes
trying to match the given string. Without any parameters, it reads the last
record or 256 bytes found. This command uses the same pointer as the
M command. Since this command does not use indexing, there may be
some noticeable delay when using this command to search through large
amounts of data.

Example: Search the open indexed file test1 for a record in field two
with the pattern “abcdefg” within the next 129838 records from the
current move pointer:
 P s &0201FB2E F "record"

Returns:

 "abcdefghijklmnop" Record found.

Successful return values:

A record or 256 bytes of binary data containing the search
string.

Possible error codes that can be returned from this command:

01, 03, 04, 10, 23, 35, 36, 37, 39, 40, 63, 65 (See pages 128–129
for a description of the error codes.)

126 Chapter 5 LaserLite Mx Memory Card Data Management

V

Reads the memory card’s program version. The version is sent out in
ASCII format. The version number for the DMS is:
 VTDMSx.xx

The version number of the firmware is:
 VTMCFx.xx

Example: Read the DMS version:
 P v

Returns:

 "VTDMS1.02" The DMS version.

Successful return values:

Version number of the DMS or firmware.

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 128–129 for a description of the error
codes.)

Chapter 5 LaserLite Mx Memory Card Data Management 127

Y

Repeats the data sent by the memory card processor.

Example: If the last command was the V example described above:
 P y

Returns:

 VTDMS1.02 The DMS version.

Successful return values:

Last data.

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 128–129 for a description of the error
codes.)

Z

Puts the data collector in sleep mode.

Example: Put the data collector to sleep:
 P z

Returns:

 00 Data collector put to sleep.

Successful return values:

00

Possible error codes that can be returned from this command:

03, 04, 10 (See pages 128–129 for a description of the error
codes.)

128 Chapter 5 LaserLite Mx Memory Card Data Management

The following table lists the status and error codes:

Code
(Mem
Card)

Code
(Comm
SW)

Description

00 21000 Operation successful.
01 21001 Unrecognized memory card. This version recognizes

Toshiba’s SSFDC 2, 4, and 8 MB memory cards.
02 21002 Unrecognized memory card.
03 21003 Syntax error.
04 21004 CRC of command did not match.
05 21005 Unknown command.
06 21006 Missing parameters for this command.
07 21007 Incorrect parameters for this command.
08 21008 Binary file.
09 21009 Incorrect file type.
10 21010 Too much data in the command.
22 21022 No ID file.
23 21023 No data.
31 21031 No such file exists.
32 21032 No file opened.
33 21033 Too many files (>60 files).
34 21034 The page has already been written to four times. (Note:

Toshiba only allows you to write to a page four times.)
35 21035 No such record exists.
36 21036 End of file.
37 21037 Beginning of file.
38 21038 Timeout occurred.
39 21039 Memory full.
40 21040 Write/protect encountered.
41 21041 Record too large (>1024 bytes).
42 21042 Field too large (>255 bytes).
43 21043 Some of the physical functions are locked to avoid data

corruption. Try: N &0129 to unlock.

Chapter 5 LaserLite Mx Memory Card Data Management 129

Code
(Mem
Card)

Code
(Comm
SW)

Description

51 21051 File management error (control data was changed).
52 21052 Sequential file corrupted (by accidental power failure).
53 21053 Data corrupted.
54 21054 CRC of boot file did not match (program data may be

corrupted).
55 21055 The boot file program is too large (must be less than 24

KB).
61 21061 Memory card program failed (card may be worn out).
62 21062 Block erase failed (card may be worn out).
63 21063 Unknown memory card format.
64, 65 21064,

21065
First block of memory is bad (broken card).

66 21066 Too many bad blocks (card may be damaged).
67 21067 Most of the reserved control blocks are bad (card worn

out).
68 21068 The memory card has been erased more than 32,768

times (each K &1092 or N &1092 counts as one erasing).

130 Chapter 5 LaserLite Mx Memory Card Data Management

Transferring Files Between the Memory Card
and the Computer

To transfer files to and from the memory card, you must use either the
Vxcom (Windows 95/98/NT) or Download (DOS) communications
program’s commands file. Vxcom and Download are discussed in
Chapter 1.

The syntax for the Vxcom command line is:

Vxcomxxx [app.s] [REF.CRF] [sys.os] [cmd.txt] {arguments}

or

Vxcomxxx [image.img] [cmd.txt] {arguments}

The syntax for the Download.exe command line is:

DOWNLOAD [app.s] [REF.CRF] [sys.os] [cmd.txt] {arguments}

or

DOWNLOAD [image.img] [cmd.txt] {arguments}

The [cmd.txt] parameter represents the commands file.

Chapter 5 LaserLite Mx Memory Card Data Management 131

Commands File

A commands file is an ASCII text file that ends with a .TXT, .VDX, or
no extension. The communications program attempts to open any text
document as a commands file. You can create a commands file with a
text editor or generate it from a custom application program. If the
communications program encounters more than one commands file, it
only opens and attempts to execute from the last one listed on the
command line.

The commands file is a list of instructions to the communications
program telling it what actions to perform. The communications program
attempts to execute the commands sequentially from the top to the
bottom of the file. If it encounters an error, it automatically stops
executing and notifies the user of the error.

A commands file typically includes commands to:

• = send and retrieve files from the memory card,

• = send cross-reference files (.TXT files) to the memory card,

• = receive the data file,

• = change the ID on the LaserLite Mx,

• = set the clock to the computer’s time,

• = resend the operating system software (.OS file), and so on.

It is important to list the commands in an order that matches an expected
flow of operation for the LaserLite Mx. For example, the LaserLite Mx
must be unlocked before it can accept any of the other commands in the
list, so each commands file list will typically begin with an I (Unlock)
command. Also, important data should be transferred from the
LaserLite Mx prior to loading new operating system, application, or
cross-reference files.

132 Chapter 5 LaserLite Mx Memory Card Data Management

Commands File Commands

The following table summarizes the commands file’s commands. The
commands indicated by an asterisk (*) have been added or enhanced for
use with LaserLite Mx and memory cards; additional information on
these commands can be found on the pages indicated. Information on the
other commands is in Chapter 1 of this manual.

Command Description
' Comment indicator.
C <id> Set or change the unit’s ID to the given

ID. If no ID is given, the command fails.
*D <file type> <filename> Delete file from memory card (page 134).
*F [<output filename>] Display memory card’s file management

report (page 135).
G Run the current application using the

operating system Go command.
I <id> Send an Unlock command to the

LaserLite Mx using the given ID. The
command is sent every 5 seconds for 35
seconds.

*K Remove deleted files from memory card
(page 134).

L Send a Lock command and put the
LaserLite Mx to sleep. When the unit is
awakened with a keypress, it immediately
runs the current application.

M1 <message> Set display line 1 to the given message.
M2 <message> Set display line 2 to the given message.
*R [<# of bins>] <file type> <filename> Send file to LaserLite Mx (page 133).
*S [<folder path>] <file type> <filename> Get file from LaserLite Mx (page 134).
T Set the time on the LaserLite Mx to the

computer’s time (synchronize the clocks).
Z Clear the data in the data collector.

Note: A space is required between the command and the arguments.

The communications program interprets the commands in the commands
file in order. It issues the appropriate series of P commands (see pages
105–129 for information on the P command) to the operating system,
which passes commands directly to the memory card module processor.
The communications program uses the CRC checked commands and
automatically adds the CRC to each command string.

Chapter 5 LaserLite Mx Memory Card Data Management 133

Memory Card Commands for the Commands File

The following sections provide more information on the commands used
in the Vxcom or Download commands file to communicate with a
memory card. The following table lists the commands file commands
that are used to communicate with the memory card. Note: A space is
required between the command letter and the parameters. The following
commands are described in detail on the following pages.

Command Description
D <file type> <filename> Delete file from card.
F [<output filename>] File management report.
K Remove deleted files.
R [<number of bins>] <file type> <filename> Send file to card.
S [<folder path>] <file type> <filename> Get file from card.

R Command

• = The R command sends a file to the LaserLite Mx. If you use the
<file type> argument, the file is sent to the memory card.

Syntax:

 R [<# of bins>] <file type> <filename>

Parameters:

Argument Description
of bins Modulus (size) for indexed (I) files only. Integer value can

be in the range 1–65535. This argument is not used for
sequential (S), identification (D), or boot (B) file types.

file type The type of memory card file (either (I)ndexed,
(S)equential, I(D)entification, or (B)oot).

filename Name of file (include extension).

134 Chapter 5 LaserLite Mx Memory Card Data Management

S Command

• = The S command retrieves a file from the LaserLite Mx. If you use
the <file type> argument, the file is retrieved from the memory card
(instead of from RAM).

Syntax:
 S [<folder path>] <file type> <filename>

Parameters:

Argument Description
folder path Name of folder that the retrieved file is put into; the file is

placed in the current folder if a folder path is not given
(optional argument).

file type The type of memory card file (either (I)ndexed,
(S)equential, I(D)entification, or (B)oot).

filename Name of file (include extension).

D Command

• = The D command deletes a file from the memory card.

Syntax:
 D <file type> <filename>

Parameters:

Argument Description
file type The type of memory card file (either (I)ndexed,

(S)equential, I(D)entification, or (B)oot).
filename Name of file (include extension).

K Command

• = The K command removes deleted files from the memory card.

Syntax:
 K

Chapter 5 LaserLite Mx Memory Card Data Management 135

F Command

• = The F command requests the memory card’s file management report.
The operating system returns the data as it receives it from the
memory card and stores it to a file that can be viewed and printed.

Syntax:
 F [<output filename>]

Parameters:

Argument Description
output filename Name of file that the information is written to

(optional argument). If a filename is not specified, the
report is written to a file named CFILES.TXT.

If an <output filename> is provided, the file management report is
written to the named file instead of to the default file CFILES.TXT.

The communications program presents the memory card’s file
management report in the following format:

Memory Card File and Memory Status Report

Total Space: xx Kbytes
Bad Space: xx Kbytes
Available Space: xx Kbytes
Retrievable Space: xx Kbytes

Number of deleted files:xx
Number of valid files: xx

File # Deleted Type Table Size Kbytes Name
1 No B 0 26 BOOTCARD0
2 No B 0 38 CPU
3 No I 2203 1677 CRF1.TXT
...

136 Chapter 5 LaserLite Mx Memory Card Data Management

File Types

The LaserLite Mx system supports the following types of files:
identification (D), boot (B), sequential (S), and indexed (I or H). Each
file type serves a different purpose. The file types are described in the
following table.

Type Purpose Comments
D A binary file that provides an ID

for the memory card.
Only one (1) ID file may exist on
the memory card at a time.

B

Two types of boot files serve
two different purposes. One
(CRD) is for the memory card
operating software that executes
in its 32K XRAM; the other
(CPU) is the main operating
system (LMXxxx.OS) and
application of the LaserLite Mx.

These filenames are reserved by
the LaserLite Mx system.
CRD – The operating software
for LaserLite Mx 32K XRAM.
This file is required; it is created
when the card is formatted using
MXFORMAT.EXE.
CPU – An operating system and
application that may be booted
from the memory card. This file
is optional; see pages 145–146
for information on creating and
loading a CPU file.

S

A binary file not intended for
booting.

I

This is the primary file type for
data and cross-reference. Data is
appended record-by-record.
Each record is passed to the data
management system to ‘hash’
and add to the record. This
enables quick lookup.

A hash table size must be
indicated when indexed files are
created. Please see the notes on
pages 141–142.

H

Another type of indexed file, but
the decision of table entry is
determined outside of the
memory card data management
system. This system may be
useful for programs that must
maintain a strict order of data,
but require the ability to change
or edit data.

Vxcom does not support
transferring H files.

Chapter 5 LaserLite Mx Memory Card Data Management 137

Commands File Examples

The following example demonstrates using a commands file with a
LaserLite Mx:

I 0000000000
'Unlocks the unit to prepare it for communications
M1 Get File Report 'Send message to line 1 of unit.
F before.txt 'Get file report to write to before.txt.
M1 Downloading 'Send message to line 1 of unit.
M2 data.txt 'Send message to line 2 of unit.
S I data.txt 'Instruct unit to send an ‘I’ type file

'from its memory card.
M2 picklist.txt 'Send message to line 2 of unit.
S I picklist.txt 'Instructs unit to send another ‘I’

'type file from its memory card.
M1 Clearing files 'Send message to line 1 of unit.
M2 **************** 'Send message to line 2 of unit.
D I data.txt 'Mark ‘data.txt’ file as deleted.
D I picklist.txt 'Mark ‘picklist.txt’ file as deleted.
K 'Erase deleted files from memory card

'to free up memory.
M1 Receiving new 'Send message to line 1 of unit.
M2 picklist file 'Send message to line 2 of unit.
R 2203 I picklist.txt 'Instruct unit to create a new ‘I’

'type file with 2203 ‘bins’ and to
'prepare to receive, index, and save
'each record.

M1 Set date and 'Send message to line 1 of unit.
M2 time 'Send message to line 2 of unit.
T 'Synchronize clock with computer’s.
M1 Get File Report 'Send message to line 1 of unit.
F after.txt 'Get file report to write to after.txt.
L 'Put LaserLite Mx unit to sleep.

The following commands file sends a cross-reference file named crf1.txt
to the LaserLite Mx memory card:

I 0000000000
'Unlock the LaserLite Mx.
R 2203 I "crf1.txt" 'Send a file for the memory card

'to index to 2203 bins.
L 'Lock the LaserLite Mx.

138 Chapter 5 LaserLite Mx Memory Card Data Management

The following commands file sends a cross-reference file named xref.txt
to the LaserLite Mx memory card:

I 0000000000
'Unlock the LaserLite Mx for communications.
D I "xref.txt" 'Delete previous copies of file.
K 'Free up all available memory.
R 2203 I "xref.txt" 'Create and send file to the

'memory card, index to 2203 bins.
F 'Create a file report to CFILES.TXT.
L 'Lock the LaserLite Mx.

Vxcom or Download sends the file (one record at a time) to the
LaserLite Mx memory card. When the LaserLite Mx receives the record,
it indexes it and adds it to the data file.

To send additional files, add them to the commands file or create a new
commands file, and execute Vxcom or Download again.

The following example commands file retrieves data from a file on a
card, deletes the file from the card, sends a new image file to the card,
then requests the file management report from the card.

I 0000000000
'Unlock the LaserLite Mx.
S I "data.txt" 'Receive a file, via YModem, from

'the memory card.
D I "data.txt" 'Delete the data file just

'transferred from the card.
K 'Remove deleted file from card.
R B "CPU" 'Send a new LaserLite Mx operating

'system and boot program to the card.
F 'Request file management report.
G 'Start the program.

Note: When creating the commands file, do not include any characters
on the I command line after the unit ID parameter . Any additional
characters (including spaces) after the unit ID will cause this command
to fail. In the above examples, the comments associated with the I
commands are on the next line.

Chapter 5 LaserLite Mx Memory Card Data Management 139

Notes on Communicating with a Memory Card

• = All data transferred between the host and the memory card must

begin with a command letter and end with a carriage return.

• = The command letter may be lowercase or uppercase. When the
command letter is uppercase, the memory card module software is in
debug mode; when the command letter is lowercase, the software is
in normal mode. The difference between debug mode and normal
mode is that the communications between the host and memory card
are CRC checked for normal mode, and not CRC checked for debug
mode.

• = For a lowercase key character command, the CRC is calculated from
all of the bytes (including space and escape characters: & and ' or ")
before the carriage return. The complements of the two CRC bytes
are sent at the end of the command, before the carriage return, with
the low byte sent first. The CRC of all the bytes sent across before
the carriage return will always be &B001, if correct. The CRC of the
returns from the card will only include the bytes before the carriage
return.

• = A command has two different types of fields besides the command
letter: parameters to control the behavior of the command and data
to be passed between the host and the memory card.

• = All of the fields for a command must be separated by a space
and must be input in the order defined.

• = The parameters may be binary values, single byte ASCII,
and ASCII strings (such as filename and key field).

• = A binary parameter may be up to 4 bytes long and can be
input in both decimal and hexadecimal formats.

• = The data may be hexadecimal values (for binary data) or
ASCII strings (for records).

• = The hexadecimal values must begin with an ampersand (&)
and end with an ampersand, space, or carriage return.

• = ASCII strings (with more than one character) must be
enclosed in either single ('xxx') or double ("xxx") quotation
marks; a single non-numeric ASCII byte does not need to be
enclosed in quotation marks.

140 Chapter 5 LaserLite Mx Memory Card Data Management

• = The returns from the card module can be status bytes (in decimal
form), data (in hexadecimal or ASCII string format), or prompts
responding to a single carriage input. The prompt for the firmware
includes three bytes: a carriage return, a line feed, and a semicolon
(:). The prompt for the memory card’s boot program (Data
Management System (DMS)) is: a carriage return, line feed, and
greater-than sign (>).

• = For a lowercase command letter, the CRC is calculated from all of
the bytes (including space and escape characters: & and ' or ")
before the carriage return. The complements of the two CRC bytes
are sent at the end of the command, before the carriage return, with
the low byte first. The CRC of all the bytes sent across before the
carriage return will always be &B001, if correct. The CRC of the
returns from the memory card will only include the bytes before the
carriage return.

• = For indexed files, the DMS handles one record at a time. The fields
within the record must be separated by a tab character.

• = For sequential files, every byte in the data field of a command is
written to the file.

• = Doubling the “escape character” forces the character to be a data
byte, for example, “&&” in a quoted string represents character &;
“''” represents character '. If two continuous escape characters
need to be used as escape (as when sending two strings together) a
space must be used to separate the strings.

• = Do not include a carriage return or a backspace in a quoted string. A
carriage return can only be used as the end of transmission mark and
the backspace key will delete the previous byte. If nonprintable bytes
need to be sent as part of a string, they should be sent as a
hexadecimal value.

• = Any binary data, except the control characters (08 hex, 0D hex) and
the escape characters (&, " or '), can be sent as ASCII strings.

Chapter 5 LaserLite Mx Memory Card Data Management 141

About the Modulus
Notes about hashed indexes on the LaserLite Mx

Hash tables differ from other tables or arrays because they provide the
LaserLite Mx system a fast way to seek data in an ASCII data file. They
provide nonsequential access to data elements through the use of a hash
function that converts the key field into an integer and divides it by the
size (modulus) of the hash table. The remainder becomes the “key,”
“lookup value,” or “bin” that indexes where to find the data element.
The LaserLite Mx system provides a built-in hash function for
distributing data elements into a hash table.

While the actual hash algorithm for the LaserLite Mx is written in 8051
assembler, it is based on the following C language code example which
is based on Allen Holub’s portable adaptation of Peter Weinberger’s
generic hashing algorithm.

/*---Hash PJW---
/*An adaptation of Peter Weinberger’s (PJW) generic
/*hashing algorithm based on Allen Holub’s version.
/*Accepts a pointer to a datum to be hashed and
/*returns an unsigned integer.
---/

#include <limits.h>

#define BITS_IN_int (sizeof(int) * CHAR_BIT)
#define THREE_QUARTERS ((int) ((BITS_IN_int * 3) / 4))
#define ONE_EIGHTH ((int) (BITS_IN_int / 8))
#define HIGH_BITS (~((unsigned int)(~0) >> ONE_EIGHTH))

unsigned int HashPJW (const char * datum)
{

unsigned int hash_value, i;
for (hash_value = 0; *datum; ++datum)
{

hash_value = (hash_value << ONE_EIGHTH) + *datum;
if ((I = hash_value & HIGH_BITS) ! = 0)

hash_value =
(hash_value ^ (I >> THREE_QUARTERS 00 &

~HIGH_BITS;
}
return 9 hash_value);

}

142 Chapter 5 LaserLite Mx Memory Card Data Management

What Modulus Should be Used When Creating an Indexed File?

The Videx hashing formula can accommodate any number of records,
regardless of the modulus. Performance will decrease as the number of
records becomes much larger than the modulus.

Use the following rules for selecting the modulus for LaserLite Mx
indexed files:

• = Optimal trade-off between performance and space efficiency is
achieved when the anticipated number of records is less than twice
the modulus.

• = A prime number modulus provides the best distribution of data.
The following prime numbers selections can provide optimal
distribution:

13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941, 11213, 21701, 23209, 44497.

• = The LaserLite Mx can support a modulus up to 65535.

Chapter 5 LaserLite Mx Memory Card Data Management 143

Common Precautions for Using a Memory Card

It is important to be aware of the following notes and precautions when
using a memory card:

• = Do not remove the memory card from the LaserLite Mx unless
the lock switch is in the OFF position (towards the lock icon).

• = Do not remove the memory card or turn off power to the
LaserLite Mx during operations; such as, file transfer, card
formatting, or file deletion. This could damage the memory card.

Doing either of the above could interrupt writing important data
management information to the memory card and render some data
irretrievable.

Note: Removing a memory card from the LaserLite Mx while the
unit is ON automatically places the memory card module processor
in ‘halt’ mode. This prevents any undesirable writing to the memory
card. To restart the memory card module processor, the LaserLite
Mx must restart from the ‘sleep’ mode. This happens when the unit
is switched OFF or when it times out. ‘Sleep’ mode is indicated by a
blank display.

The memory card is a precision electronic device:

• = Do not apply pressure or shock.

• = Do not bend or drop.

• = Do not use or store the memory card in an environment subject
to strong static electricity or electrical noise interference.

• = Do not use the memory card in a hot, humid, or corrosive
environment.

• = Make sure no dirt or foreign particles are on the contact area. Do
not touch the contact area with your fingers.

• = Clean the memory card with a soft anti-static cloth (available at
electronic stores).

144 Chapter 5 LaserLite Mx Memory Card Data Management

Protecting the Data in the Memory Card

• = Transferring files to and from the memory card is prevented when a

write/protect adhesive seal is applied to the write/protect area. To
enable file transfer, remove the write/protect adhesive seal.

• = Apply the write/protect adhesive seal properly. Make sure that the
write/protect adhesive seal is applied securely in its place.

• = Data can be written to the memory card at least 250,000 times. For
example, if data is written to the memory card 30 times a day, the
card will last at least 20 years.

• = Data can be lost or destroyed in the following situations:

• = Improper handling and use of memory card by the user or third
party.

• = Exposure to static electricity or EMI (electronic magnetic
interference).

• = Removing the memory card or turning off power to the
LaserLite Mx during an operation.

• = The memory card can be used reliably over many years, but will
eventually lose its ability to store and transfer data. At this point,
replace with a new card.

• = We recommend saving your important data to another medium;
such as, a floppy disk or hard disk.

Chapter 5 LaserLite Mx Memory Card Data Management 145

Booting From the Memory Card

The LaserLite Mx system allows the developer to create and load
bootable application files onto the memory card. When the LaserLite Mx
system starts, it automatically checks for the presence of these files and
boots under certain conditions.

To create the bootable file, use Vxcom as follows:

Vxcomxxx <application name>.s LMXxxx.os -f1 -k2

This creates a new image file called FLASH.IMG. Rename the
FLASH.IMG file to CPU.

The file LOADCPU.VDX contains the following commands:

I 0000000000
'Unlock the LaserLite Mx for communications.

D B CPU 'Delete any previous copy of CPU boot file.
†

K 'Free up all available memory.
R B CPU 'Load the CPU file from the computer.
F 'Create a file report to CFILES.TXT.
L 'Lock the LaserLite Mx.

† Note: If a CPU file is not on the memory card when the commands
sequence is executed, the D command will not generate an error. This
commands file works whether a CPU file is present or not.

You can use LOADCPU.VDX or create a similar commands file to send
the new CPU file to the memory card. To do so, use this command line:

VXCOMxxx LOADCPU.VDX

This procedure assumes that an OS file is already installed and running
on the LaserLite Mx. (Note: The LaserLite Mx OS filename is
LMXxxx.OS, where xxx represents the version number of the file.) If
the .OS file is not installed on the LaserLite Mx, you will need to load
both the memory card and the main RAM with the desired program.

146 Chapter 5 LaserLite Mx Memory Card Data Management

To load the new image file to both the memory card and the RAM on the
LaserLite Mx, create the CPU file as described on the previous page, and
use a text editor to modify LOADCPU.VDX as follows:

I 0000000000
'Unlock the LaserLite Mx for communications.
R 'Load files included on the command line.
D B CPU 'Delete any previous copy of CPU boot file.
K 'Free up all available memory.
R B CPU 'Load the CPU file from the computer.
F 'Create a file report to CFILES.TXT.
T 'Set LaserLite Mx time by computer’s time.
L 'Lock the LaserLite Mx.

Then use this command line:

 Vxcomxxx <application name>.s LMXxxx.os LOADCPU.VDX

Chapter 5 LaserLite Mx Memory Card Data Management 147

Sending Cross-Reference Files to the Memory
Card

A commands file must be passed with Vxcom or Download to send
cross-reference files to the memory card. Cross-reference files are
typically used for lookups and data verification in applications built with
Videx BASIC. The LaserLite Mx also permits applications to delete and
add records to cross-reference files that reside on the memory card.

A cross-reference file for the memory card must be created as an ASCII
text file and have a .TXT extension. The text file can be created with a
text editor, a spreadsheet program, or exported from a database. A tab
character must separate the fields and each record must end with a
carriage return/line feed (which is the default behavior for computer-
based text editors and ASCII exports from computer database programs).
See page 149 for more information on creating a cross-reference file for
a memory card.

Following is an example of a commands file to load a cross-reference
file on the memory card:

I 0000000000
'Unlock the LaserLite Mx for communications.
D I <filename.txt> 'Delete any previous copies of the file.
K 'Free up all available memory.
R 2203 I <filename.txt> 'Create and load new I type file.
F 'Create a file report to CFILES.TXT.
L 'Lock the LaserLite Mx.

When Vxcom or Download sends the file to the LaserLite Mx, it sends
it one record at a time. As the LaserLite Mx receives the record, it
indexes it and adds it to the data file.

To send additional files, add them to the commands file, or create a new
commands file and execute Vxcom or Download again.

148 Chapter 5 LaserLite Mx Memory Card Data Management

Transferring Data from the Memory Card

To retrieve data from the memory card, set up a commands file similar to
this:

I 0000000000
'Unlock the LaserLite Mx for communications.
S I <filename.ext> 'Open and send the named type and file.
L 'Lock the LaserLite Mx.

This commands file does not clear the data from the file. To clear data,
the file must be deleted with the line: D <file type> <filename>.

Vxcom or Download appends the transferred data to a file of the same
name if it exists; otherwise, it creates a new file.

Chapter 5 LaserLite Mx Memory Card Data Management 149

Creating a Cross-Reference File for the Memory
Card

You can use your computer to create a cross-reference file for the
memory card. The file should be created as a tab-delimited ASCII text
file with no quotes around the records or the fields. The structure of each
record is as follows:

Data Field 1
(key field)

Tab Data Field 2 Tab Data Field 3 …

The maximum record length is 1000 characters. There is no limit to the
number of fields within that 1000-character limit.

These are the steps to load a cross-reference file onto a memory card:

1. Create a tab-delimited ASCII file as defined above. In this example,

we will use the name PICKLIST.TXT for the filename.

2. Using a text editor such as Windows Notepad, create a commands

file that contains the following commands. Note: Do not include the
comments.

I 0000000000 ' Unlock unit
D I picklist.txt ' If file exists on card, delete it
K ' Free all available memory on card
R 2203 I picklist.txt ' Load file to memory card
F ' Write memory card file system

' status to CFILES.TXT
G ' Restart application

150 Chapter 5 LaserLite Mx Memory Card Data Management

Opening a File on the Memory Card

Up to 60 different files may reside on the memory card including deleted
files. In Videx BASIC, the following command syntax opens an existing
file named picklist.txt on the memory card:

CARDCMD O, I, picklist.txt

The memory card software system receives the command, processes it,
then this syntax retrieves the file handle.

cardresult% = CARDSTATUS(cardreturn$)

Cardresult% captures the success or failure of the command. If
CARDSTATUS returns 0 to cardresult%, then CARDCMD executed
successfully. If picklist.txt is not on the memory card, then
cardresult% should have a value of 31.

If picklist.txt is found and opened, then cardreturn$ will contain the
file handle number. You can then put the file handle number into a
variable…

IF cardresult% = 0 THEN picklist$ = cardreturn$

…then later re-open that file by referencing the file handle number only.

fileopen$ = “O, “ + picklist$
CARDCMD fileopen$

See the Videx BASIC Manual for information on Videx BASIC.

Chapter 5 LaserLite Mx Memory Card Data Management 151

Data and Cross-Reference File Handling on the
Memory Card

The following routine demonstrates matching input against a cross-
reference file, extracting data from the second field of the record,
checking for duplicate scans in the data file, and saving data. It processes
input from an INPUTEVT loop as follows:

Data from
INPUTEVT

loop

Is it an <ENTER>
key with no data?

Yes

No

Open the cross-
reference file and
attempt to find a

match

Is it in the cross-
reference file? No

Yes

Open the data file
and attempt to find

a match.

Has it already been
scanned?

Yes

Sound low tone and return to
INPUTEVT loop

No
Record the data and display
the second field (description)
from the cross-reference file.

Parse and store
the second field
from the cross-
reference file.

Sound low tone and return to
INPUTEVT loop

Sound low tone and return to
INPUTEVT loop

152 Chapter 5 LaserLite Mx Memory Card Data Management

This is the corresponding BASIC source code.
fn_input:
'* fn_input
'* description: Respond to a user input event.
'* Data is validated by checking if it is in cross-reference
'* file on memory card. If data is valid, emit beep, flash Valid
'* Scan LED, and display description field corresponding to the
'* key field which was scanned.

if device% = 1 then
if len(data$) = 0 then
'it's an ENTER key, with no data
sound 698, 250 'sound a low beep
return

endif
endif

cardcmd O, 2203, I, "bigcrf.txt" 'open crf file on card
gosub process_cardcmd_error
cardresult% = cardstatus (cardreturn$)
gosub process_cardret_error

cardcmd F, data$ 'search for data$ in crf file
gosub process_cardcmd_error
cardresult% = cardstatus (cardreturn$)
gosub process_cardret_error

if (cardresult% <> 35) then 'data found in crf file
tabpos% = instr (cardreturn$, chr$(9)) 'look for tab
desc$ = mid$(cardreturn$, (tabpos%+1),(len(cardreturn$)-tabpos%))
cardcmd O, 2203, I, "data.txt" 'open data file on card
gosub process_cardcmd_error
cardresult% = cardstatus (cardreturn$)
gosub process_cardret_error
cardcmd F, data$ 'search for data$ in data file
gosub process_cardcmd_error
cardresult% = cardstatus (cardreturn$)
gosub process_cardret_error

if (cardresult% = 35) then 'data not already in data file
option(258) = 1 'turn on the LED
sound 1446, 250 'good beep
option(258) = 0 'turn off the LED
cardcmd A, data$ 'add this scan to data file on card
gosub process_cardcmd_error
cardresult% = cardstatus (cardreturn$)
gosub process_cardret_error
display$ = desc$ 'display the input on the screen
mode = mode_dn% 'scroll down to last line of file
full_display$ = desc$ 'initialize scroll right & left
shift% = 0

else
gosub bad_tone 'duplicate scan, sound bad beep

endif
else

gosub bad_tone 'not in crf file, sound bad tone
endif

return

Chapter 5 LaserLite Mx Memory Card Data Management 153

Changing Records in Memory Card Files

Because of the characteristics of the flash memory in memory cards,
changing a record on the card entails the following steps:

1. Read the desired record into a memory variable.
2. Make the desired changes to the data in the variable.
3. Delete (hide) the old record.
4. Add a new record with the contents of the memory variable.

This routine demonstrates editing “on-the-go.” The picklist.txt file
loaded into the LaserLite Mx is a pick list. Each record has four fields
delimited by tabs. The fields are 1) data, 2) description, 3) quantity
wanted, and 4) quantity picked. Following is a flowchart that describes
the flow of the validation:

Scanned
Data

Is there a
match in the
pick list file?

Yes

1. Copy record to
memory variable
2. Determine if
quantity wanted >
quantity picked

Is quantity
wanted greater
than quantity

picked?

Yes

No

1. Increment
quantity picked.
2. Delete current
record in pick list
3. Add new record
to pick list
4. Open data file
5. Create record
 with time and date
from system.
6. Add new record
to data file

No

Beep and display
"No more needed"

Beep and display
"Not in pick list"

DONE

154 Chapter 5 LaserLite Mx Memory Card Data Management

The user scans one item at a time until each item in the list is picked.
The following program is the corresponding Videx BASIC code for the
input routine. (Note: The following program contains program lines that
exceed the width of the page; so we will use the pipe character (|) to
indicate that the program line continues.)

fn_input:

if device% = 1 then
if len(data$) = 0 then

'it's an ENTER key, with no data
sound 698, 250 'sound a low beep
return

endif
endif

gosub open_picklist 'open the pick list file
cardcmd F, data$ 'search for data$ in pick file
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)

if (cardresult% = 35) then 'data not found in data file
cls 'or if not found in pick list,

'do not accept it
locate 0,0
print data$
print "Not in pick list";
gosub card_error_tone
sleep 2500

elseif (cardresult% <> 0) then
gosub process_card_error

else
cardcmd M 'copy the record to a memory variable
gosub process_cardcmd_error 'so it can be edited.
cardresult% = cardstatus(cardreturn$)'sort the fields
tabpos1% = instr (cardreturn$, chr$(9)) 'look for tab
tabpos2% = instr (tabpos1% + 1, cardreturn$, chr$(9))
desc$ = mid$(cardreturn$, (tabpos1% + 1), (tabpos2%)|

(tabpos1% + 1)))

tabpos3% = instr (tabpos2% + 1, cardreturn$, chr$(9))

qtywanted% = val(mid$(cardreturn$, (tabpos2% + 1),|
((tabpos3%+1) - tabpos2%)))

qtypicked% = val(mid$(cardreturn$, (tabpos3% + 1),|
(len(cardreturn$) - tabpos3%)))

Chapter 5 LaserLite Mx Memory Card Data Management 155

IF qtypicked% >= qtywanted% THEN
cls
locate 0,0
print desc$
print "No more needed!";
gosub card_error_tone
sleep 2500
gosub open_datafile

ELSE
cardcmd M,H 'delete record at the move pointer
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

'create a new record

option(258) = 1 'turn on the LED
sound 1446, 250 'good beep
option(258) = 0 'turn off the LED
record$ = data$ + chr$(9) + desc$ + chr$(9) +|

str$(qtywanted%) + chr$(9) + str$(qtypicked%+1)
cardcmd A, record$ 'add the new record
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error
display$ = desc$ 'display description on screen

gosub open_datafile

record$ = data$ + chr$(9) + date$() + chr$(9) + time$()

cardcmd A, record$
gosub process_cardcmd_error
cardresult% = cardstatus(cardreturn$)
gosub process_card_error

lastinput$ = data$

ENDIF

mode = mode_dn% 'same as if just scrolled down to
'last line of the file

full_display$ = desc$ 'initialize to scroll right & left
shift% = 0

endif

return

156 Chapter 5 LaserLite Mx Memory Card Data Management

LaserLite Mx Error Handling Strategies

The LaserLite Mx operating system and memory card software system
provide a comprehensive set of error reporting codes and conditions.

The errors may be reported in any of three ways:

1. By the LaserLite Mx operating system through events reported by

the Videx BASIC INPUTEVT statement.
2. By the Videx BASIC CARDCMD statement as global errors.
3. By the Videx BASIC CARDSTATUS function as integer return

values.

Examples of error reporting are shown on the following pages. See the
Videx BASIC Manual for information on the INPUTEVT statement,
CARDCMD statement, and the CARDSTATUS function.

Chapter 5 LaserLite Mx Memory Card Data Management 157

Operating System Error Handling

The LaserLite Mx operating system checks for error conditions both
when it starts an application and when it returns from sleep (0 to 599).

The following flowchart illustrates the sequence of steps:

As illustrated, any of the error conditions will cause the operating system
to automatically restart an application and set the appropriate event flag.

Keyboard or timer
wakes up the

processor

Is there a
memory card
circuit board?

Is there a
memory card?

Is the card
readable?

Is the card
bootable?

Is
 its ID

 different than the
last card
 booted?

IF
 card ID

different than the
last card
used?

Yes

Yes

Yes

Yes

Yes

Boot from the
memory card

Begin Operating
System Startup

No Set "no card
module" flag

No Set "no card"
flag

Set "card not
recognized"

flag
No

No

Read flags set so
far

IF "no card
module"

Set event
type%=10

IF "no card" Set event
type%=11

IF "card not
recognized"

Set event
type%=12

Set event
type%=13

Was
memory card
status saved

before
sleep?

Yes

No Set event
type%=14

Resume
Application

Restart
Application

158 Chapter 5 LaserLite Mx Memory Card Data Management

The following two BASIC routines are called by the Videx BASIC
INPUTEVT statement in response to event type% = 13 and
event type% = 14. They are found in the MX-DEMO.B sample
application.

evt_card_interrupted:
'*
'* evt_card_interrupted
'* description: Since the sleep routine saves the latest
'* status from the memory card software system, it can then
'* update the card on the next CARDCMD issued after waking
'* from sleep. If there is no valid status available, it
'* indicates that an event like a power failure or something
'* interrupted the process the status could be saved.
'* In either case, the application will automatically be
'* restarted. This routine notifies the user.
'*

cls
locate 0,0
print "Communication to"
print "card interrupted";
sleep 2000
cls
locate 0,0
print "Application"
print " restarted ";
sleep 2000
cls

return

evt_cardID:
'*
'* evt_cardID
'* description: Since the last time the OS ran, the card ID
'* has changed. The OS automatically restarts the
'* application and sets this event. This routine notifies
'* the user.
'*

cls
locate 0,0
print "Card ID changed"
sleep 2000
cls
locate 0,0
print "Application"
print " restarted ";
sleep 2000
cls

return

Chapter 5 LaserLite Mx Memory Card Data Management 159

CARDCMD Statement Errors

The Videx BASIC CARDCMD statement may generate global errors
that indicate that the operating system was unable to send the statement
to the memory card software system. It can generate the following global
errors:

Error Description Possible Cause
-1 Communications with the

memory card timed out.
The memory card software system is
busy processing the last command set it
received or it didn’t have enough time to
finish processing the current command.
In either case, try using the CARDCMD
statement with the [!] option on
commands that require more time than
800ms to process.

-2 A memory card module
was not detected at
startup.

CARDCMD reads the system startup
flags before attempting to communicate
with the memory card software system.

-3 A memory card was not
detected at startup.

If a memory card is inserted, the system
should be restarted to properly set the
flags that a card is present.

-4 The memory card does
not have a recognized
format.

Unformatted card.

-11 The memory card
processor is asleep and
cannot receive a
command.

Removing the memory card without first
turning off the LaserLite Mx can cause
this error.

160 Chapter 5 LaserLite Mx Memory Card Data Management

The following BASIC routines handle the global errors from
CARDCMD and are included in the MX-DEMO.B source code:

process_cardcmd_error:
'*
'* process_cardcmd_error
'* description: Look for and report error with CARDCMD.
'*

crderr% = ERR
IF crderr% = 0 THEN 'no error

ELSEIF crderr% = -11 THEN 'Timeout error; perhaps card
cls 'was pulled out or the memory
locate 0,0 'card was busy when CARDCMD
print "No response from" 'tried to issue a command
print " memory card! "; 'Remember, pulling out the

gosub card_error_tone 'card freezes the memory card
sleep 1 'processor. It must be reset

'for it to restart. That's why
'it's best to go to sleep and
'let the system bring it back
'up when it wakes up.

ELSEIF crderr% = -2 THEN
goto evt_nomodule

ELSEIF crderr% = -3 THEN
goto evt_nocard_cmd

ELSEIF crderr% = -4 THEN
goto evt_badcard

ELSE
cls
locate 0,0
print " Cardcmd error "
print " # " + str$(crderr%) ;
gosub card_error_tone
sleep 2500
running = false%

ENDIF
return

Chapter 5 LaserLite Mx Memory Card Data Management 161

evt_nomodule:
'*
'* evt_nomodule
'* description: This event is set when the system starts and
'* the monitor determines that there is no response from a
'* memory card module. Since this application is designed to
'* run with a memory card, it should not be allowed to run
'* when this event is encountered.
'*

cls 'A -2 error is set by the system at start up
locate 0,0 'if it determines there is no memory card
print " No card module" 'module present. This program

'doesn't do much good on a
'system like that.

print " detected ";
gosub card_error_tone
sleep 3000
running% = false%
end

return

evt_nocard:
'*
'* evt_nocard
'* description: This event is set when the system starts and
'* the monitor determines that no memory card is inserted.
'* Since this application is designed to run with a memory
'* card, it should not be allowed to run when this event is
'* encountered. It calls the sleep routine to allow the user
'* to insert a card and then restart the application.
'*

'After waking up from sleep, the system
'determined that there was no card inserted

cls 'and set a global flag to indicate no card.
locate 0,0 'The system must wake up from sleep with a
print " No card " 'memory card inserted to
print " inserted! "; 'clear this flag.
gosub card_error_tone
sleep 2500
cls
locate 0,0
print "Insert card then"
print " press a key ";
sleep 10

return

162 Chapter 5 LaserLite Mx Memory Card Data Management

evt_nocard_cmd:
'*
'* evt_nocard_cmd
'* description: This routine is called when a -3 (no card)
'* error is received from CARDCMD. It warns the user then
'* exits to the OS. When the memory card is re-inserted,
'* then the user may press and hold the scan button. The
'* application restart allows the monitor to determine if a
'* card has been placed in the slot. Since this application
'* is designed to run with a memory card, it should not be
'* allowed to run without one inserted.
'*

cls
locate 0,0
print " No card "
print " inserted! ";
gosub card_error_tone
sleep 2000
cls
locate 0,0
print "Insert card then"
print "hold SCAN button";
sleep 5000
running% = false%

return

Chapter 5 LaserLite Mx Memory Card Data Management 163

evt_badcard:
'*
'* evt_badcard
'* description: This event occurs when the system cannot
'* recognize the memory card or the card won't boot. If the
'* memory card isn't formatted, then the system sets a
'* global flag to indicate that the memory card was not
'* recognized. On the other hand, a partially formatted card
'* may not give the system any problem until the application
'* attempts to send it a command. Then this routine may be
'* called because of an error 05 indicating that the card
'* software system didn't boot.
'*

cls
locate 0,0
print " Card not "
print " recognized ";
gosub card_error_tone
sleep 2000

cls
locate 0,0
print " Reformat card "
print " then retry ";
sleep 2000
cls
locate 0,0
print " running "
print " application ";
sleep 3000
cls
locate 0,0
print " Exiting to OS "
print " ";
sleep 1500
running% = false%

return

164 Chapter 5 LaserLite Mx Memory Card Data Management

CARDSTATUS Function Errors

The final type of error is generated by the memory card software system
itself. The Videx BASIC CARDSTATUS function returns either an
integer or a string value representing data. When the value of the
CARDSTATUS integer return equals 0, then the given operation is
considered successful and the string returned by CARDSTATUS
represents data.

Different commands may return different integer errors, some of which
may be part of normal operations. For example, when moving the record
pointer forward or backward in an indexed file, a return of 36 indicates
the end of file and 37 indicates the beginning of file. In the same
circumstances, a return of 23 indicates that the file contains no data.

The variety of possible commands and error routines requires careful
consideration of whether the error has been generated by user error or
coding error. In any case, for reliable operations, it is important to check
the integer return of each call to CARDSTATUS. See the Videx BASIC
Manual for complete information on CARDSTATUS.

Chapter 5 LaserLite Mx Memory Card Data Management 165

CARDSTATUS can return the following integer system errors:

Error Description Note

-1 Communications with the
memory card timed out.

The memory card software system
does not respond.

-2 A memory card module was
not detected at startup.

As with the CARDCMD statement,
CARDSTATUS first checks the
system flags before attempting to
communicate with the memory card
module. Errors -2 and -3 will be
returned if the system flags indicate.

-3 A memory card was not
detected in the module at
startup.

-5 The CRC of the return from
the memory card system does
not match the one calculated
by CARDSTATUS.

System communications problem
between the main CPU and the
memory card module.

-6 The return from the memory
card is unrecognized.

Same as above.

-7 The designated string is too
short for return from the
memory card.

Dimension the string memory variable
that receives data from
CARDSTATUS to a larger value.

-8 No CARDCMD was issued
since the last call to
CARDSTATUS.

This indicates a coding error. The
system expects CARDCMD and
CARDSTATUS to be called in pairs.

-10 Card is still busy when
CARDSTATUS called.

The memory card software system is
still processing an instruction.

-11 Card is asleep when
CARDSTATUS called.

Removing the memory card during
operations can cause this error.

-15 The return from the memory
card has exceeded the 2K
buffer.

This should occur only with 1K data
records containing ‘&’ as every 2nd
character.

166 Chapter 5 LaserLite Mx Memory Card Data Management

The following BASIC routines handle integer errors from
CARDSTATUS and are included in the MX-DEMO.B source code:

process_card_error:
'*
'* process_card_error
'* description: Since the CARDSTATUS() function returns an
'* integer error code, it can be quickly analyzed and
'* processed with each call.
'*

IF crderr% THEN
'already handled by cardcmd error processing

ELSEIF (cardresult% = 0)THEN 'No error
ELSEIF (cardresult% = 5)THEN 'This response can only

error5% = true% 'come from firmware. It
n_times% = 1 'indicates the DMS software
cls 'isn't booted, perhaps
locate 0,0 'because the DMS boot file
print " Card system " 'is not on the card.
print " error! ";
goto boot_card

ELSEIF (cardresult% = 32) THEN
'This error means no file is open

cls
locate 0,0
print " No file open! "
print " ";
gosub card_error_tone
return

ELSEIF (cardresult% = 37) 'top of file
OR (cardresult% = 36) 'bottom of file
OR (cardresult% = 23) THEN 'no data

ELSE

error_ring: gosub card_error_tone
'otherwise just report the error number
cls
locate 0,0
print "Crd return error"
print "# " + str$(cardresult%);
sleep 3000

ENDIF

return

Chapter 5 LaserLite Mx Memory Card Data Management 167

boot_card:
'*
'* boot_card
'* description: This routine attempts to load and run the
'* DMS software on the memory card.
'*

cardcmd N 'Initialize the card.
cardcmd B 'Send the boot command to start the DMS
cardresult% = cardstatus(buffer_var$)

'software in the card.
cls

IF (cardresult% = 31) THEN
goto evt_no_boot

ELSEIF (cardresult% > 0) THEN 'If it still didn't boot,
goto evt_badcard 'then perhaps the card

'isn't formatted.

ELSE
gosub evt_card_interrupted

'If the boot was successful,
sleep 1 'then something caused it to fail in the

ENDIF 'first place. As a safeguard, the
'application should be restarted to
're-initialize pointers.

return

168 Chapter 5 LaserLite Mx Memory Card Data Management

evt_no_boot:
'*
'* evt_no_boot
'* description: This event occurs when the memory card won't
'* boot. A partially formatted memory card may not give the
'* system any problem until the application attempts to send
'* it a command. Then this routine may be called because of
'* an error 05 indicating that the card software system did
'* not boot and a subsequent attempt to boot it failed.
'*

cls
locate 0,0
print " Memory card has "
print " no boot file! ";
gosub card_error_tone
sleep 2000
cls
locate 0,0
print " Reformat card "
print " then retry ";
sleep 2000
cls
locate 0,0
print " running "
print " application ";
sleep 2000
cls
locate 0,0
print " Exiting to OS "
print " ";
sleep 1300
running% = false%

return

card_error_tone:
'*
'* card_error_tone
'* description: Tone indicating a card command error.
'*

sound 2349, 300
sound 1885, 600

return

Chapter 6 Data Files 169

Chapter 6

DuraTrax, LaserLite, LaserLite Pro
and LaserLite Mx Data Files

This chapter contains information on:

• = The default data file.

• = The Scan.S data file.

• = The TimeWand II-style data file (Timewand.src).

170 Chapter 6 Data Files

Default Data File

The default data file for the DuraTrax, LaserLite, LaserLite Pro, and
LaserLite Mx is similar to Figure 6-1.

 10-28-99 09:34:28 00002169
 10-28-99 09:40:15 00002378
 10-28-99 09:54:55 01:00000004859F
 10-28-99 10:22:12 87965
 10-28-99 10:37:32 ABC-123
 10-28-99 14:56:32 00003567

Figure 6-1 Default Data File

The default data file lists the date of the entry, followed by the time of
the entry, followed by the bar code data, Touch Memory button’s serial
number, or keypad entry.

Chapter 6 Data Files 171

Scan.s Data File

Data transferred from a DuraTrax, LaserLite, LaserLite Pro, or LaserLite
Mx programmed with the Scan.s application program, is saved as a
TimeWand I/DuraWand-style raw scan file. The raw scan file can be
viewed using a text editor. This file has not been formatted by a database
program or by a file manager program. Figure 6-2 shows data in a raw
scan file from transferring a single data collector programmed with
Scan.s.

H 19990521092700 00 0000000001
19990521091500 00 1000384
19990521091515 00 2023445
19990521091553 00 3857439
19990521091607 00 2045872
19990521091621 00 3345748
19990521091638 00 1348507
19990521091658 00 2000843
19990521091703 00 2345733
19990521091734 00 3234239
19990521091812 00 4985434
19990521091823 00 4903488
T 000

Header

Tailer
Single Space

Between Fields

Carriage Return

Data

Figure 6-2 TimeWand I/DuraWand-Style Raw Scan File Format

The Header always appears as the first line in the scan file. The Header
lists the unit’s ID and the date and time of the data transfer.

The Tailer marks the end of the transferred data and identifies any errors
in the transferring process. Each line of data between the Header and the
Tailer represents individual bar code scans, keypad entries, or button
reads. There is a single space character between each field in the raw
scan file, and a carriage return ends each line.

172 Chapter 6 Data Files

The Header

Following are the definitions for the various parts of the Header.

1. The Header always begins with a capital H before the line of data.

It indicates the beginning of the data transferred from a single
DuraTrax, LaserLite, LaserLite Pro, or LaserLite Mx.

H 19990521092700 00 0000000001

2. This indicates the year the data file was transferred.

H 19990521092700 00 0000000001

3. This indicates the month and the day the data file was transferred.

H 19990521092700 00 0000000001

4. This uses 24-hour time to indicate the hour, minutes, and seconds

that the data file was transferred.

H 19990521092700 00 0000000001

5. This is the source code. The source code is currently undefined in

the Header but may be used in the future.

H 19990521092700 00 0000000001

6. This is the data collector’s ID.

H 19990521092700 00 0000000001

Chapter 6 Data Files 173

The Data

Following are the definitions for the various parts of the data.

1. This indicates the year the data was entered.

19990521091500 00 1000384

2 This indicates the month and the day the data was entered.

19990521091500 00 1000384

3. This uses 24-hour time to indicate the hour, minutes, and seconds

that the data was entered.

19990521091500 00 1000384

4. This number represents the origin of data. This number indicates

the bar code symbology. For example, an origin of data of 00
indicates that the data was collected from scanning a whole Code 3
of 9 bar code; a 01 indicates that the data was collected using a
scanpad or keypad; a 02 is a UPC-A or UPC-E bar code, and so on.
See page 180 for a list of the origin of data codes.

19990521091500 00 1000384

5. This is the data; it can be bar code data, a Touch Memory button

serial number, or a keypad entry. The data can vary in length and
can include spaces. (Note: A Touch Memory button’s serial number
is always a 12-digit hexadecimal number.)

19990521091500 00 1000384

6. This portion of the data line is fixed in length.

19990521091500 00 1000384

174 Chapter 6 Data Files

The Tailer

Following are the definitions for the various parts of the Tailer.

1. The Tailer always begins with a capital T before the line of data. It

indicates the end of the data transferred from a single DuraTrax,
LaserLite, LaserLite Pro, or LaserLite Mx.

T000

2. These three digits identify any errors that may have been detected

in the data transfer. If these are all zeros, this means there were no
errors.

T000

Chapter 6 Data Files 175

TimeWand II-Style Data File (Timewand.src)

Data transferred from a DuraTrax, LaserLite, LaserLite Pro, or LaserLite
Mx using the Timewand.src template, is saved as a TimeWand II-style
data file. A TimeWand II-style data file is almost identical to the raw
scan file, but it also contains application-indexing information. The data
file can be viewed using a text editor. This data file has not been
formatted by a database program or by a file manager program. Figure 6-
3 shows data in a TimeWand II-style data file from transferring a single
data collector programmed using Timewand.src.

H 19991231235900 00 0000000001 !
19991231221500 00 1000384 1
19991231221534 00 J 837 2
19991231221545 00 17 3
19991231222607 00 1000456 1
19991231222635 00 J 456 2
19991231222716 00 26 3
19991231224527 00 1000222 1
19991231224618 00 J 333 2
19991231225202 00 13 3
19991231230306 00 J 334 2
19991231230555 00 15 3
T 000

Header

Tailer

Wand ID

Application Indicator

Scan
Data

Time and Date

Space between fields Origin of Data

Entered Data

Index Number

Each line ends
with carriage
return

Figure 6-3 Timewand.src TimeWand II-Style Data File

The Header appears as the first line in the data file. The Header
identifies the unit and the time of the transfer. The exclamation mark (!)
after the Header shows that the unit’s data is indexed. Each line of data
ends with a space followed by the index number. The index number

176 Chapter 6 Data Files

indicates which Input Handler the data belongs to; this indexing
information is useful when separating the data into fields. (Note: Input
Handlers are numbered from top to bottom and from left to right.)

For example, Figure 6-4 shows a sample application. (Note: The number
in each Input Handler’s name shows the Input Handler’s ID; the IDs are
numbered from top to bottom and from left to right.) Figure 6-5 shows a
corresponding data file. Notice that the index number matches the Input
Handler number.

Figure 6-4 Sample Application

Figure 6-5 Sample Application Data File

The Tailer marks the end of the transferred data. Each line of data
between the Header and the Tailer represents individual data entries.

The data fields are separated by spaces, and each line of the data file
ends with a carriage return and line feed.

Chapter 6 Data Files 177

The Header

This section defines the highlighted portions of the Header.

1. The Header begins with a capital H before the line of data. It

indicates the beginning of the data.

H 19991231235900 00 0000000001 !

2. This indicates the year the data file was transferred.

H 19991231235900 00 0000000001 !

3. This indicates the month and the day the data file was transferred.

H 19991231235900 00 0000000001 !

4. This uses 24-hour time to indicate the hour, minutes, and seconds

the data file was transferred.

H 19991231235900 00 0000000001 !

5. This is the source code. The code is currently undefined in the

Header but may be used in the future.

H 19991231235900 00 0000000001 !

6. This is the identification number belonging to the unit. This is

always a ten-digit number.

H 19991231235900 00 0000000001 !

7. This is the application indicator; it appears at the end of the Header

if the data has been indexed.

H 19991231235900 00 0000000001 !

178 Chapter 6 Data Files

The Data

This section defines the highlighted portions of the data.

1. This indicates the year the data was entered.

19991231221500 00 1000384 1

2. This indicates the month and the day the data was entered.

19991231221500 00 1000384 1

3. This indicates the hour, minutes, and seconds (24-hour) that the
data was entered.

19991231221500 00 1000384 1

4. This number represents the origin of data and indicates the type of
data entered. Bar code symbologies and Touch Memory buttons
have their own origin of data numbers. For example, 00 indicates
that the data was collected by scanning a complete Code 3 of 9 bar
code, a 01 indicates that the data was collected using either a bar
code scanpad or the keypad, 02 indicates that the data was collected
from scanning a UPC bar code, and so on. See page 180 for a list of
the origin of data numbers.

19991231221500 00 1000384 1

5. This is the actual data; it can be from a bar code scan, keypad entry,
or Touch Memory button touch. The data can vary in length and
may include spaces.

19991231221500 00 1000384 1

6. Each data line will end with an index number. The index number
corresponds to the Input Handler’s ID.

19991231221500 00 1000384 1

7. This portion of the data line is fixed in length.

19991231221500 00 1000384 1

Chapter 6 Data Files 179

The Tailer

The Tailer always begins with a capital T before the line of data. It
indicates the end of the data transferred from a single data collector.

 T 000

180 Chapter 6 Data Files

Origin of Data

The following table defines the origin of data for the following bar code
symbologies:

Bar Code Symbology Origin of Data
Complete Code 3 of 9 bar code 00
Keypad or bar code scanpad entry 01
UPC A or E bar code 02
Interleaved 2 of 5 bar code 03
Codabar bar code 04
EAN/JAN bar code 06
Code 128 bar code 10

The following table shows the family code and the origin of data for
some of the Dallas Semiconductor Touch Memory buttons:

Button Family Code
(Hexadecimal)

Origin of Data

DS1990A 01 31
DS1991 02 32
DS1992 08 38
DS1993 06 36
DS1994 04 34
DS1995 0A 40
DS1996 0C 42
DS1982 09 39
DS1985 0B 41
DS1986 0F 45
DS1920 10 46

The origin of data for a Touch Memory button is derived by taking the
hexadecimal family code number of the button, converting it to a
decimal number, and adding 30.

For example: The DS1920 button has a family code of 10 hexadecimal,
which is equivalent to 16 decimal; add 30 and you get 46, which is the
origin of data of a DS1920 button.

Chapter 7 Cross-Reference File Convert Programs 181

Chapter 7

Cross-Reference File Convert
Programs

This chapter contains information on:

• = Cross-reference files for DuraTrax, LaserLite, LaserLite Pro, and

LaserLite Mx.

• = The Vxcrfw.exe cross-reference file convert program for Windows.

• = The Vxcrf.exe cross-reference file convert program for DOS.

• = Using a cross-reference (.CRF) file on a data collector.

182 Chapter 7 Cross-Reference File Convert Programs

Cross-Reference File Discussion

Most database programs are capable of exporting a text file (*.TXT) to
be used by other applications. In many situations, a user needs to use the
text file for a cross-reference file. A text file cross-reference file can be
used by a LaserLite Mx with a memory card (refer to page 149). A
DuraTrax, LaserLite, LaserLite Pro, or LaserLite Mx without a memory
card cannot recognize a text file as a cross-reference file until it is
converted into a *.CRF file. Cross-reference files created with
Application Builder are automatically saved as *.CRF files.

The cross-reference text file must be comma or tab delimited. Do not
place quotes around the records; however, quotes are optional around
fields. Up to three description fields can be in the cross-reference file
besides the key field. Fewer than three fields are acceptable, but do not
use more than three fields. (If more than three fields are necessary, use
Vxcrf.exe discussed on pages 184–187.) The text file should be in the
following format:

 Key<delimiter>Field1<delimiter>Field2<delimiter>Field3<cr/lf>

and saved as a text file with a .TXT extension. Note: If using tab
delimiters, use a text editor that preserves tab characters (for example,
Notepad or Wordpad, but not MS-DOS text editor).

You can convert the text file into a *.CRF file by either opening the text
file in the Application Builder’s CRF window, or by converting the text
file with either the Vxcrfw.exe or the Vxcrf.exe programs located in the
Develop folder.

To convert a text file into a *.CRF file with the Application Builder’s
CRF window, choose Open from the File menu; the Open window
appears. At the bottom of the Open window is a Files of type: pop-up
menu; choose Any file from the menu and open the text file. The text
file is displayed in a CRF window. When you save the file, it is
automatically converted and saved as a *.CRF file.

Chapter 7 Cross-Reference File Convert Programs 183

To convert a text file with the Vxcrfw.exe program, drag and drop the
text file icon onto the Vxcrfw.exe program icon; a *.CRF file is
automatically created. To convert a text file with the Vxcrf.exe program,
run Vxcrf.exe from the command line, a *.CRF file is automatically
created. See the following sections for complete information on using
Vxcrfw.exe and Vxcrf.exe.

Vxcrfw.exe

The cross-reference file (*.CRF) convert program for Windows is
Vxcrfw.exe.

Vxcrfw.exe is a Windows executable program that converts an ASCII
text file (*.TXT) into a *.CRF file that can be used by a DuraTrax,
LaserLite, LaserLite Pro, or LaserLite Mx without a memory card. The
ASCII text file must be comma or tab delimited, have no quotes placed
around records (quotes are optional around fields), no more than three
description fields in addition to the key field, and saved as a text file.

To use Vxcrfw.exe to convert the text file into a *.CRF file, drag and
drop the text file icon onto the Vxcrfw.exe program icon. A file with a
.CRF extension is automatically created.

If the text file has 4 to 16 description fields in addition to the key field,
you must use the DOS program Vxcrf.exe to convert the file. See the
following page for information on using Vxcrf.exe.

184 Chapter 7 Cross-Reference File Convert Programs

Vxcrf.exe

The cross-reference file (*.CRF) convert program for DOS is Vxcrf.exe.
Vxcrf.exe converts an ASCII text file into a *.CRF file that can be used
by a DuraTrax, LaserLite, LaserLite Pro, or LaserLite Mx without a
memory card. The advantage to using Vxcrf.exe is that it can convert a
cross-reference file with up to 16 description fields, in addition to the
key field; whereas, the other convert programs are limited to three
description fields. The ASCII text file must be comma or tab delimited,
have no quotes placed around records (quotes are optional around
fields), and no more than 16 description fields in addition to the key
field. If more than three description fields are required, it is necessary to
use the -v parameter in the command line. With three or fewer fields, the
-v parameter is optional.

The syntax for the command line is:

vxcrf [-v<number of fields>] filename.txt

where filename.txt is the name of the text file and the -v parameter
indicates the number of description fields (in addition to the key field) in
the filename.txt file. Vxcrf.exe creates a file filename.crf that can be
used as a cross-reference file by a DuraTrax, LaserLite, LaserLite Pro, or
LaserLite Mx without a memory card.

The following steps describe how to:

• = convert a text file (*.TXT) into a *.CRF file,

• = edit the application source code file to include the *.CRF file,

• = compile the edited application source code file,

• = and transfer the compiled application and *.CRF file to the data
collector.

Chapter 7 Cross-Reference File Convert Programs 185

1. Create a comma-delimited or tab-delimited ASCII text file (*.TXT)
in the format:

 Key<delimiter>Field1<delimiter>Field2<delimiter>...FieldN<cr/lf>

 where Key is the data matched to the user input and Field1 through
FieldN are the description fields. Field1 through FieldN are
optional, but do not have more than 16 fields in addition to the key
field. Note: If using tab delimiters, use a text editor that preserves
tab characters (for example, Notepad or Wordpad, but not MS-DOS
text editor).

2. To convert the text file into a *.CRF file, run Vxcrf.exe from the

DOS command line:

 vxcrf [-v<number of fields>] filename.txt

 where the -v parameter indicates the number of description fields in
the filename.txt file, in addition to the key field. If the number of
description fields is three or less, the -v parameter is not necessary.
The number of description fields cannot be greater than 16. This
program will create a file filename.crf, which is a cross-reference
file that can be used on a DuraTrax, LaserLite, LaserLite Pro, or
LaserLite Mx without a memory card.

3. To use the *.CRF file in your application, open the application

source code file (.B extension). Note: The application source code
file is created when you choose Export Binary or Export Source
Only from the Application Builder’s File menu. See the Export
Binary command section in the Application Builder Manual for
information on creating the source code file.

4. In the application source code file, open the *.CRF file using the

following syntax:

 OPEN filename$ FOR REFERENCE AS #filenumber%

 The filename$ is the name of the *.CRF file; it must be all
uppercase and enclosed in quotes. The filename$ must be the same
name used in Step 2 previously (with the .CRF extension). The
filenumber% must be a number between 0 and 31 that has not been
used as the filenumber% in another OPEN statement.

186 Chapter 7 Cross-Reference File Convert Programs

 It is recommended that the ERR function (which returns the most

recent error condition) be called immediately after attempting to
open a *.CRF file. For example:

open "FILE1.CRF" for reference as #1
if err then

gosub crf_error
endif

 See the Videx BASIC Manual for more information on the BASIC
statements and functions.

5. In the application source code, you can find a record in the *.CRF

file with a specified key field using the syntax:

 rec% = LOOKUP (filenumber%, strexpr$)

 where strexpr$ is the key field and filenumber% is the number that
was used in the OPEN statement to open this *.CRF file. Each
record in a *.CRF file is assigned a unique number from 1 through
n (where n is the number of records in the file). This unique number
is returned from LOOKUP. The records are not necessarily stored
sequentially, so do not assume that rec% corresponds to the row
number in the *.CRF file. If the data string strexpr$ is not found,
LOOKUP returns 0.

6. Following a successful call to LOOKUP within the source code,

the data can be retrieved from the *.CRF file using the syntax:

 fieldDesc% = LOOK$ (fieldnum%)

 where fieldnum% is the field value to be returned. If fieldnum% is

0, the key field itself is returned. If it is between 1 and 16, the
corresponding data string from the *.CRF file is returned. If it is
any other value, the results are unpredictable.

Chapter 7 Cross-Reference File Convert Programs 187

7. After making any changes to the application source code file, it
must be compiled before it can be used on a data collector. To
compile the application, use Vxbasic.exe using the following
syntax:

 vxbasic filename.b

 where filename.b is the name of the application source code file (.B
extension). The application is compiled and saved as an object file
with a .S extension. (Note: If Vxbasic.exe encounters any errors in
the application source code file during the compile process, it stops
and displays the error and source code line on the screen.)

8. Transfer both the compiled application source code file (*.S) and

the *.CRF file to the DuraTrax, LaserLite, LaserLite Pro, or
LaserLite Mx without a memory card using the syntax:

 DOWNLOAD [cmd.txt] [app.s] [REF.CRF] [sys.os] [-pn] [-dn] [-f1]

 where cmd.txt is the commands file (optional); app.s is the
compiled application; REF.CRF is the *.CRF file and must be in
all UPPERCASE letters; sys.os is the operating system (optional
unless unit has been reset to monitor mode); -pn specifies the serial
port (1–4; default is 1); -dn specifies the IR configuration (0 for
Base Station or built-in IR transceiver, 1 for JetEye). The -f1
parameter is only used if you want to transfer the application to the
flash memory of the LaserLite Pro or LaserLite Mx.

 It is possible to transfer multiple *.CRF files using Download.exe;
the filenames must be separated by spaces.

The application must be loaded each time a *.CRF file is loaded,
even if only the *.CRF file changes and the application itself has
not. Both files must be included in the Download.exe command.
See the Download for DOS section on page 10 for more
information.

188 Chapter 7 Cross-Reference File Convert Programs

Cross-Reference File (*.CRF) Notes

If you have difficulty using a *.CRF file in the data collector, check the
following:

• = If using tab delimiters, create the text file for the *.CRF file using a

text editor that preserves tab characters (for example, Wordpad or
Notepad, but not MS-DOS text editor).

• = Use Vxcrf.exe or Vxcrfw.exe to convert the text file into a *.CRF
file.

• = If the *.CRF file has more than three fields, in addition to the key
field, use the -v parameter in the Vxcrf.exe command line.

• = Both in the OPEN statement in the application source code file and
in the DOWNLOAD.exe command string, refer to the *.CRF file
using all uppercase letters.

• = Transfer both the application and the *.CRF file into the data
collector, even if only the *.CRF file has changed.

• = If the *.CRF file will not transfer to the data collector, verify that
the *.CRF file contains data and is not empty. The communications
programs will not transfer an empty *.CRF file.

Chapter 8 Theory of Operation 189

Chapter 8

Theory of Operation

This chapter contains information on:

• = The operations of the DuraTrax, LaserLite, LaserLite Pro, and

LaserLite Mx.

190 Chapter 8 Theory of Operation

Theory of Operation Overview
The DuraTrax, LaserLite, LaserLite Pro, and LaserLite Mx operate on
four AA alkaline or nickel-cadmium batteries. Input voltage can vary
from 4 to 6 volts (V) under full load (90 mA). A linear regulator
converts the battery voltage to +3.3 V. The processor is an 8051 type.
Clock and RAM are backed up with a 3 V lithium battery. A boot loader
(monitor program), residing in the processor ROM, handles program
loading from the IR serial link.

All four units use similar CPU boards, but different scanner boards. The
DuraTrax has a contact scanner and the LaserLite, LaserLite Pro, and
LaserLite Mx have a laser scanner. Each unit has a nose board in the
head of the device for the LEDs, lithium battery, and beeper.

Some of the I/O functions available for applications are: Real-time clock
(RTC), analog-to-digital converter (ADC) for battery, Touch Memory
button contact, contact bar code reading, LEDs, beeper, serial
communications, display, keyboard, and power management.

Power Up Sequence

With batteries installed (greater than 4.0 V) and lock switch ON, a wake-
up from a keypress or Touch Memory button contact resets the CPU.
The processor initiates a power-on sequence and then executes code
from the XRAM (external RAM). The program sets up all latches as
required. A search is carried out to determine the required action: button
contact, keypress (scan or scroll), or serial communications. The LCD is
activated to display human readable characters.

Chapter 8 Theory of Operation 191

Battery Monitoring

Battery conditions can be monitored by the ADC so that a low-battery
alert is implemented by the software. For alkaline batteries this would be
4.5 to 4.0 V. Different battery chemistries (such as, alkaline or NiCad)
may affect the threshold chosen. Both the default application and the
application templates begin issuing low voltage warnings at 4.8 volts.
More aggressive warning messages are triggered at 4.5 volts. This
provides a 0.9 V margin above the operation cut-off for batteries that
have greater than normal internal resistance.

A power-fail indicator monitors the battery source. It sends an interrupt
to the CPU if the source falls below 3.6 V. At this point, the scanner
circuits may experience reduced reading performance. If required, a
CPU/RAM cleanup can be completed before shutting down. The CPU
should always be prepared for the eventual loss of power from battery
removal before entering STOP mode. A power failure will not wake up a
sleeping CPU.

A hardware-reset circuit monitors the low-battery alert (VCC). Should
the battery voltage fall below where the CPU and RAM operate, at about
3 V, the CPU is placed in reset and the RAM Chip Select line is
deactivated.

Power Down Sequence

Operating system software places all devices in low-power modes before
entering STOP mode of the CPU. These include scanner, LCD, IR, and
LEDs.

Boot Loader (Monitor Program)

Boot loader residing in processor ROM allows update of the RAM from
the IR port. See Chapter 2 for more information on the monitor program.

Communications

Communications for transferring software and data is through the IR
port.

192 Chapter 8 Theory of Operation

Memory Access

(Refer to the System Memory Map Diagrams on pages 48–50.)

RAM: 128K x 8 bit (LaserLite and DuraTrax)
 256K x 8 bit (LaserLite Pro and LaserLite Mx)

MEMORY MAP
 Data and program space not segregated.
 A15 = Low A0–A14 Access base 32K block.
 A15 = High A0–A14 AD15, AD16, AD17 select one of 32K
 blocks.
 If both IOSEL1 and A15 High, A4 and A5 select I/O device to
 Read or Write. Note: If both IOSEL1 and A15 High, No DATA
 or PROG access to RAM, reserved for I/O space only.
 To access latch (LEDs, beeper, etc.), keyboard, LCD.
 Program execution from the base 32 KB.

Times

(Note: The times are approximate values.)
Battery removal VCC holdup time 1 mS
(Time from power fail to reset)
Reset duration from sleep mode initiated by key activity 40 mS
Power cycling reset 250 mS
RAM access time maximum 100 nS

Currents

(Note: The currents are approximate values.)
CPU Stop Mode with all devices OFF 800 µA
CPU Idle Mode with LCD ON 8 mA
CPU Run Mode with Scanner ON 80 mA

Chapter 8 Theory of Operation 193

Voltages

(Note: The voltages are approximate values.)
ADC battery range 3.6 V to 6.5 V
Device operation with scanners 4.0 V
Battery power fail threshold 3.6 V
Battery reset level 3.3 V

Environmental Testing

CE mark
FCC

Definition of Terms

ADC Analog to Digital Converter

CPU Central Processing Unit

IRAM CPU Internal RAM (Random-access memory)

IrDA Infrared Communications

IR Infrared

LCD Liquid Crystal Display

RAM Random-access memory

ROM CPU Boot ROM (Read-only memory)

RTC Real-Time Clock

XRAM External 128K RAM

194 Chapter 8 Theory of Operation

Circuit Description

Main Board

The main board contains the CPU/RAM and controls the activity of the
data collector.

Battery supply - The four AA batteries supply the power to the data
collector. A diode protects the device from reverse polarity. A regulator
supplies the 3.3 V to the CPU, RAM and logic gates. A second diode
along with its regulator supply 3.3 V to the IR diode, LCD doubler, and
scanner. Another regulator monitors the battery voltage should it drop
below 3.6 V and sends an interrupt to the CPU. The LCD requires 5 V
from a doubler and is regulated to 5 V. The power to the scanner is
controlled by a transistor which is switched by the output latch.

Wake-up circuit - The wake-up circuit resets the CPU from stop mode.
Any activity from the keys, button contact, or alarm will initiate the
reset. The switch disables wake up when switched OFF, but does not
disable RTC wake-up process. Reset time is approximately 30–50 ms to
give the IR crystal time to restart.

Button touch - The button touch circuit toggles and senses the touch
line as needed to communicate with Dallas Semiconductor Touch
Memory buttons (also known as iButtons).

Real-time clock (RTC) - The RTC performs many functions. The
Watch Dog function, when enabled, monitors the CPU for activity. The
ADC is used to monitor battery voltage. The Reset circuit monitors the
VCC line for a safe operating range. A non-volatile RAM controller
monitors the VCC line for placing the RAM in low-power mode. The
lithium battery is also switched through the RTC IC, and of course the
real-time clock and alarm. A 32 kHz crystal maintains the time of day.

CPU - 8051 family of 8-bit processor. The CPU, under software control,
handles all of the needed operations to communicate with other devices.
An 11.059 MHz crystal controls the timing.

Chapter 8 Theory of Operation 195

Lithium battery - A 3 V lithium battery is located on the nose board.
The battery backs up the RAM and RTC should the AA batteries be
removed. The lithium battery is recharged through a 3.3 V regulator and
diode at a constant voltage and current limit. The RTC controls the
switch over, when VCC drops below 2.5 V.

IR communications - A controller controls the detection and
modulation of the IR diodes for communications to a compatible IrDA
docking device. A 3.6 MHz crystal controls the timing. The IR_TX and
IR_RX lines are shared with the RTC. The IR IC is placed in float mode
and low-power mode when not in use.

RAM (DuraTrax and LaserLite) 128K x 8 bits RAM IC.
 Backed-up by the lithium battery.

 (LaserLite Pro and LaserLite Mx) 2-128K x 8 bits
 RAM IC. Backed-up by the lithium battery.

Digital Logic The following logic devices are used on the CPU
 board:

Address Latch
Multiplexes address lines A0–A7.

I/O Select
A decoder multiplexes I/O select lines.

Buffer
Input buffer for keys and output buffer for LCD.

Latch
A latch IC outputs control lines for the devices.

LCD
The LCD is 2 x 16 character display.

196 Chapter 8 Theory of Operation

DuraTrax Scan Board

The scan board modulates the optic read head and demodulates the AM
signal to a digitized waveform to be processed by the CPU board.

The read head is a self-contained LED and detector diode focused on the
bar code.

A low-pass filter filters the modulated signal and demodulates the AM
signal.

A modulator and transistors modulate the read head diode at about 50
kHz.

A peak detector detects the average threshold level and squares the
output for digital processing.

A regulator regulates the battery source to 3.3 V.

LaserLite, LaserLite Pro, and LaserLite Mx Scan Board

The scan board translates the laser 5 V operation to the 3.3 V logic of
the CPU board.

The translators translate 3.3 V logic to 5 V logic of laser.

A regulator regulates and limits the battery voltage to 5 V maximum.
When battery voltage drops below 5 V, the laser voltage follows down to
3.3 V operation.

Chapter 8 Theory of Operation 197

Base Stations

The LaserLite DuraTrax Base Station is designed to accept DuraTrax
and LaserLite data collectors. Each LaserLite DuraTrax Base Station can
hold up to two units.

The LaserLite Pro Base Station is designed to accept LaserLite Pro and
LaserLite Mx data collectors. Each LaserLite Pro Base Station can hold
one unit.

Videx software handles the transfer process. A computer’s RS-232 serial
port is the intended communicating device. An expansion port is
supplied on each device that allows multiple Base Stations to be
connected to a single serial port.

198 Chapter 8 Theory of Operation

Notes:

Appendix A Modem Diagram and Cables 199

Appendix A

Modem Communications Hook-up
Configurations and Cable Pin Outs

Contents

P. 200 Modem Hook-up Diagram
P. 201 Host Modem Cable (TWC-002) to Connect Base Station
 to Host Computer
P. 203 Remote Modem Cable (TWC-003) to Connect Base
 Station to Remote Modem

Note on Signal Direction Convention:
RS-232 signal wires are given names that stay with the same wire as it goes
between the two devices being connected. Signals that imply a direction, such
as “Receive Data,” are named from the perspective of the “Terminal” (DTE)
device and may therefore appear to be backward in terms of signal direction
when applied to the “Modem” (DCE) device on the other end of the cable. In the
lists of pin assignments in this section, an indication of signal direction from the
point of view of the device to which the connector is attached has been included
in addition to the signal name.

200 Appendix A Modem Diagram and Cables

The following illustration shows you how to connect the Base Station to
a modem for remote data transfer.

Phone Line

Hayes-compatible
9600 baud modem

Videx Base Station

Serial Port Cable
TWC-001 or TWC-008

Host Modem Cable
TWC-002

- OR -
standard modem cable

Remote modem cable
TWC-003

Hayes-compatible
9600 baud modem

Videx
Base Station

Figure A-1 Modem Transfer Set Up

Appendix A Modem Diagram and Cables 201

TWC-002 Cable — Host Modem to Base Station

The cable used to connect a modem to Base Station at the host modem
location is shown in Figure A-2.

DB25S female connector
plugs into the computer’s
serial port.

RJ-11 modular connector plugs into
the Base Station’s Extension port.

Figure A-2 Host Modem Cable

Figure A-3 shows the pin configuration of the DB25P connector in
relation to the RJ-11 modular connector.

RJ-11 modular connector plugs into the
Base Station’s Extension port.

DB25S female connector plugs
into the computer’s serial port.

202 Appendix A Modem Diagram and Cables

Host Modem to Base Station Cable

View from mating side of DB25P male connector.

View from mating side of RJ-11 modular connector.

Figure A-3 Host Modem Cable Configuration

25-Pin Assignment Modular Connector
 Pin Assignment
2 TXD Transmit Data (In)
3 RXD Receive Data (Out) 2 RXD (In)
5 CTS Clear to Send (Out) 4 TXD (Out)
6 DSR Dataset Ready (Out) 5 Ground
7 Ground
20 DTR Data Terminal Ready (In)

Appendix A Modem Diagram and Cables 203

TWC-003 Cable — Remote Modem to Base
Station

The cable used to connect a modem to the Base Station at the remote
modem location is shown in Figure A-4.

DB25P male connector
plugs into the modem.

RJ-11 modular connector plugs into
the Base Station’s Computer port.

Figure A-4 Remote Modem Cable

Figure A-5 shows the pin configuration for the DB25P connector in
relation to the RJ-11 modular connector.

RJ-11 modular connector plugs into
the Base Station’s Computer port.

DB25P male connector
plugs into the modem.

204 Appendix A Modem Diagram and Cables

Remote Modem to Base Station Cable

View from mating side of DB25P male connector.

View from mating side of RJ-11 modular connector.

Figure A-5 Remote Modem Cable Configuration

25-Pin Assignment Modular Connector
 Pin Assignment
2 TXD Transmit Data (In)
3 RXD Receive Data (Out) 2 Ground
4 RTS Request to Send (In) 3 RXD (In)
5 CTS Clear to Send (Out) 5 TXD (Out)
6 DSR Dataset Ready (Out)
7 Ground
20 DTR Data Terminal Ready (In)

Appendix B Low-Level Memory Card Formatting Sequences 205

Appendix B

Low-Level LaserLite Mx Memory Card
Formatting Sequences

Contents

P. 206 Formatting an Unformatted Memory Card
P. 208 Formatting Previously Formatted Memory Cards

206 Appendix B Low-Level Memory Card Formatting Sequences

Formatting an Unformatted Memory Card

When formatting a memory card for a LaserLite Mx that is currently
unformatted or does not have a recognized format, the DMS software
must be explicitly loaded and invoked before actual card formatting can
begin. The necessary steps (in order) are as follows:

1. Place the LaserLite Mx’s lock switch in the locked position (towards

the lock icon).

2. Insert the memory card into the LaserLite Mx memory card slot.

3. Flip the lock switch back to the unlocked position (away from the

lock icon). The system should boot in firmware mode.

4. Issue the following command to unlock the physical writing

functions:

 N &0129

5. Upload the Data Management System (DMS) software (plus a two-

byte CRC for the entire application) into XRAM, starting at memory
address 0000. This is done by repeated use of the command:

 X {address} {byte-sequence}

where address is the physical address in memory and byte-
sequence is the portion of the DMS being uploaded. The maximum
size of the DMS program (including the CRC) cannot exceed 24K
bytes. This means the maximum address is 5FFF.

6. Once the DMS software is uploaded, transfer control to it from the

firmware by issuing the command: G

7. Issue the command: N &1092

again to begin card initialization. This step takes approximately 5 to
10 minutes to complete.

Appendix B Low-Level Memory Card Formatting Sequences 207

8. When the card is initialized, assign an ID name to the card with the
open (O) command:

 O D "nnn…"

where "nnn…" is the card ID. The ID can be up to 18 characters in
length and can contain printable character.

9. Open a card boot file by issuing the command:

 O B "CRD"

and load the CRC-terminated boot file using repeated calls to the A
command.

10. Open a CPU boot file by issuing the command:

 O B "CPU"

and load the CRC-terminated boot file using repeated calls to the A
command.

At this point, the card formatting process is complete. The card is now
ready to receive and store application and/or data files.

208 Appendix B Low-Level Memory Card Formatting Sequences

Formatting Previously Formatted Memory Cards

When formatting a memory card that was previously formatted, the
process is much less involved. The necessary steps are as follows:

1. If the entire card contents (including the card boot file and CPU boot

file) are to be replaced, erase all existing data on the card by issuing
the command:

 N &1092

2. If only the one of either the card boot file or CPU boot file need to

be upgraded, the file to be upgraded may be individually erased by
issuing one of the following pair of commands:

 D B "CRD"
 K &1092
or
 D B "CPU"
 K &1092

3. If the card boot file has been erased, open a card boot file by issuing

the command:

 O B "CRD"

and load the CRC-terminated boot file using repeated calls to the A
command.

4. If the CPU boot file has been erased, open a CPU boot file by

issuing the command:

 O B "CPU"

and load the CRC-terminated boot file using repeated calls to the A
command.

The card formatting process is complete. The card is now ready to
receive and store application and/or data files.

Appendix C Error Codes 209

Appendix C

Error Codes

Contents

P. 210 Communications Errors
P. 213 Memory Card Errors

210 Appendix C Error Codes

Communication Errors
Communication Errors Returned by Vxcom:

Xmodem Errors (LaserLite, DuraTrax, LaserLite Pro, & LaserLite Mx)

Vxcom
Error #

Description

16001 Gave up waiting for a character.
16002 Aborted transmission.
16003 Got out of sync with other party in transmission.
16004 Keep missing parts of packets; there may be too much noise on

line.
16005 Received the start of the packet, but rest of packet is badly formed.
16006 Received a well formed packet, but the check digits were wrong.

May have noise on the line.

General Communication Errors (LaserLite, DuraTrax, LaserLite Pro,
& LaserLite Mx)

Vxcom
Error #

Description

18000 Cannot open the serial port.
18001 Unknown command in the commands file.
18002 Error in communications.
18003 C and I commands in commands text file require identifiers.
18004 No such serial port.
18005 Error accessing a file.
18006 Not enough memory to continue.
18007 Error talking to the serial port.
18008 One of the command line arguments in the commands file does not

make sense.
18009 Loops in the commands file are nested too deeply.
18010 The file size exceeds the device’s capacity.
18011 There is no application file to load with the OS.
18012 You must specify either an OS file or an image file to load in flash.
18013 Image files (*.IMG) can only be loaded into flash.
18014 The structure of a cross-reference file is corrupted.

Appendix C Error Codes 211

General Communication Errors (LaserLite Mx)

Vxcom
Error #

Memory
Module
Error #

Description

21001 01 Unrecognized memory card. This version recognizes
Toshiba’s SSFDC 2, 4, and 8 MB memory cards.

21002 02 Unrecognized memory card.
21003 03 Syntax error.
21004 04 CRC of command did not match.
21005 05 Unknown command.
21006 06 Missing parameters for this command.
21007 07 Incorrect parameters for this command.
21008 08 Binary file.
21009 09 Incorrect file type.
21010 10 Too much data in the command.
21022 22 No ID file.
21023 23 No data.
21031 31 No such file exists.
21032 32 No file opened.
21033 33 Too many files (>60 files).
21034 34 The page has already been written to 4 times. (Note:

Toshiba only allows writing to a page 4 times.)
21035 35 No such record exists.
21036 36 End of file.
21037 37 Beginning of file.
21038 38 Timeout occurred.
21039 39 Memory full.
21040 40 Write/protect encountered.
21041 41 Record too large (>1024 bytes).
21042 42 Field too large (>255 bytes).
21043 43 Some of the physical functions are locked to avoid

data corruption. Try: N &0129 to unlock.

212 Appendix C Error Codes

Vxcom
Error #

Memory
Module
Error #

Description

21051 51 File management error (control data was changed).
21052 52 Sequential file corrupted (accidental power failure).
21053 53 Data corrupted.
21054 54 CRC of boot file did not match (program data may be

corrupted).
21061 61 Memory card program failed (card may be worn out).
21062 62 Block erase failed (card may be worn out).
21063 63 Unknown memory card format.
21064,
21065

64, 65 First block of memory is bad (broken card).

21066 66 Too many bad blocks (card may be damaged).
21067 67 Most of the reserved control blocks are bad (card

worn out).
21068 68 The memory card has been erased more than 32,768

times (each K &1092 or N &1092 counts as one
erasing).

Appendix C Error Codes 213

Memory Card Errors

Error Codes for LaserLite Mx Only

Global Errors Returned by Operating System via CARDCMD:
These errors prevent sending a statement to the memory card software
system (LaserLite Mx only).

Error Description Possible Cause
-1 Communications

with the memory
card timed out.

The memory card software system is busy
processing the last command set it received or
it didn’t have enough time to finish processing
the current command. In either case, try using
the CARDCMD statement with the [!] option
on commands that require more time than
800ms to process.

-2 A memory card
module was not
detected at startup.

CARDCMD reads the system startup flags
before attempting to communicate with the
memory card software system.

-3 A memory card
was not detected at
startup.

If a memory card is inserted, the system
should be restarted to properly set the flags
that a card is present.

-4 The memory card
does not have a
recognized format.

Unformatted card.

-11 The memory card
processor is asleep
and cannot receive
a command.

Removing the memory card without first
turning off the LaserLite Mx can cause this
error.

214 Appendix C Error Codes

Errors Returned by Memory Card Software System via
CARDSTATUS (LaserLite Mx only):

Error Description Note

-1 Communications with the
memory card timed out.

The memory card software system
does not respond.

-2 A memory card module was
not detected at startup.

As with the CARDCMD statement,
CARDSTATUS first checks the
system flags before attempting to
communicate with the memory card
module. Errors -2 and -3 will be
returned if the system flags indicate.

-3 A memory card was not
detected in the module at
startup.

-5 The CRC of the return from
the memory card system does
not match the one calculated
by CARDSTATUS.

System communications problem
between the main CPU and the
memory card module.

-6 The return from the memory
card is unrecognized.

Same as above.

-7 The designated string is too
short for return from the
memory card.

Dimension the string memory variable
that receives data from
CARDSTATUS to a larger value.

-8 No CARDCMD was issued
since the last call to
CARDSTATUS.

This indicates a coding error. The
system expects CARDCMD and
CARDSTATUS to be called in pairs.

-10 Card is still busy when
CARDSTATUS called.

The memory card software system is
still processing an instruction.

-11 Card is asleep when
CARDSTATUS called.

Removing the memory card during
operations can cause this error.

-15 The return from the memory
card has exceeded the 2K
buffer.

This should occur only with 1K data
records containing ‘&’ as every 2nd
character.

Index 215

Index
A

A (add record to memory card file)
command, 107, 109

add new record to memory card file,
107, 109

add record to memory card file (A)
command, 107, 109

alkaline batteries, 190, 191
ampersand (&) hexadecimal notation,

110
Application Builder

Describe.src, 89–101
Source Template, 75–102

application files, 23
application program, 7

B
backspace, 140
Base Station, 197
batteries, 191, 194

alkaline, 190, 191
lithium back-up, 190, 195
nickel-cadmium, 190, 191

boot file (B), 104, 122, 136
button touch circuit, 194

C
C (list card info) command, 107, 109–

13
C (set or change unit ID) commands

file command, 132
cable, host modem, 201, 202
cable, remote modem, 203
calculate CRC (Q) command, 108, 124
calculate CRC of file, 108, 124
card ID, 121, 122
carriage return, 140
Central Processing Unit, 193
change ID, 14, 29–36

DOS, 32–34

Macintosh, 35–36
Windows, 29–31

clear data (Z) commands file command,
132

Codabar, 180
Code 128, 180
Code 3 of 9, 178, 180
code generation directive, 80–88
commands file, 7, 12, 14, 24–39, 138
comment indicator for commands file,

132
communications program, 3–39, 130

commands file, 7, 12, 14, 24–39,
138
commands, 26–39, 132–35

C (set or change unit ID), 132
D (delete file from memory

card), 132, 134
F (file management report),

132, 135
G (run application), 132
I (Unlock), 132
K (remove deleted files from

memory card), 132, 134
L (lock), 132
M (message), 132
R (send file), 132, 133
S (get file), 132, 134
T (set time), 132
Z (clear data), 132

comment indicator, 132
default commands, 24
examples, 137
looping commands, 28–39
Unlock (I) command, 24, 26, 28,

38, 39, 40, 41, 42, 138
IDs.txt file, 39, 40, 41, 42
loop_id argument, 39

DOS, 4, 10
Download.exe, 10

parameters, 13–19
arguments, 15–19

Macintosh, 4, 10, 23
Videx Download, 23
Vxcom, 11–20

216 Index

parameters, 13–19
arguments, 15–19

Windows, 4, 10, 11–20
convert CRF file, 182–88
convert TXT cross-reference file to

CRF file, 182–88
CPU, 193, 194
CPU Boot ROM, 193
CPU Internal RAM, 193
create CRF file, 182
create cross-reference file, 149, 182
CRF convert program

DOS, 184
Vxcrf.exe, 184
Vxcrfw.exe, 183
Windows, 183

CRF file, 13, 181–88
convert, 182–88
create, 182
from existing database, 182–88
from text file, 182–88
troubleshoot, 188

cross-reference (CRF) file, 181–88
cross-reference file, 13, 23, 131, 136,

137, 147, 149
cross-reference file (*.CRF), 8
cross-reference file (text), 8

D
D (delete file from memory card)

commands file command, 132, 134
D (delete memory card file) command,

107, 114
data, 173, 178
data file, 9, 27, 136, 138, 147, 148,

170–80
default, 9, 170

Data.txt, 9
Header, 172
origin of data, 173
scan.s, 171
Tailer, 174

default application, 62, 66–69
default.s, 66–69
sounds, 69
variables, 89–94

default commands, 24

default data file, 170
delete file from memory card (D)

commands file command, 132, 134
delete memory card file, 107, 114, 132,

134
delete memory card file (D) command,

107, 114
delete record from memory card file,

107, 115, 116
delete record from memory card file

(H) command, 107, 115, 116
Describe.src, 89–101

sounds, 99
subroutines, 95–98
variables, 89–94

determine card ID, 108, 121, 122
display, 27, 132
DMS (Data Management System), 122,

126
DOS communications program, 10
DOS CRF convert program, 184
DOS quiet mode, 16
Download.exe, 4, 10, 32–34, 130, 133,

187
commands file, 24–39
parameters, 13–19

arguments, 15–19
quiet mode, 16

DuraTrax
change ID, 29–36

DOS, 32–34
Macintosh, 35–36

E
EAN, 180
errors, 156

CARDCMD errors, 159–63
CARDSTATUS errors, 164–68
operating system errors, 157–58

Export Binary command, 185
Export Source Only command, 185

F
F (file management report) commands

file command, 132, 135

Index 217

F (search for record with key field)
command, 107, 115, 116

file management report, 107, 109–13,
132, 135

file types, 104, 136
flash memory, 15, 53, 63
format card (N) command, 108, 121,

122
format memory card, 108, 121, 206,

208
previously formatted, 208
unformatted, 206

G
G (run application) commands file

command, 132
get file, 132, 134
get file (S) commands file command,

132, 134

H
H (delete record from memory card

file) command, 107, 115, 116
hash table, 141
Header, 171, 172, 177
hexadecimal, 110
host modem cable, 201, 202

I
I (Unlock) commands file command,

131, 132, 138
ID, 60, 63
ID, 7, 23, 24, 26, 38, 39, 61, 62, 172
ID, change, 14
identification file (D), 104, 122, 136
IDs.txt file, 39, 40, 41, 42
image file, 9, 14, 15, 16, 18, 53, 210
index number, 176
indexed file (I/H), 104, 115, 122, 125,

136, 142, 149
indexing data, 176
Infrared Communications, 193
initialize memory card, 108, 121
Input Handler ID number, 77, 176, 178

Interleaved 2 of 5, 180
IR communications, 195
IRAM, 193
IRDA, 193

K
K &1092 (remove deleted files)

command, 107, 117
K (remove deleted files) commands file

command, 132, 134
keypad, 178, 180

L
L (lock) commands file command, 132
laser scanner, 190
LaserLite

change ID, 29–36
DOS, 32–34
Macintosh, 35–36

LaserLite Mx, 53
change ID, 29–36

DOS, 32–34
Windows, 29–31

flash memory, 15, 53, 63
LaserLite Mx memory card command

set, 107–8
A (add record to memory card file)

command, 107, 109
C (list card info) command, 107,

109–13
D (delete memory card file)

command, 107, 114
error codes, 128
F (search for record with key field)

command, 107, 115, 116
H (delete record from memory card

file) command, 107, 116
K &1092 (remove deleted files)

command, 107, 117
M (move pointer) command, 107,

118–20
N (format card) command, 108, 121,

122
O (open memory card file)

command, 108, 122

218 Index

Q (calculate CRC) command, 108,
124

S (search for record) command, 108,
125

status codes, 128
V (version number) command, 108,

126
Y (repeat) command, 108, 127
Z (sleep) command, 108, 127

LaserLite Pro, 53
change ID, 29–36

DOS, 32–34
Macintosh, 35–36
Windows, 29–31

flash memory, 15, 53, 63
LCD, 193
Liquid Crystal Display, 193
list card info (C) command, 107, 109–

13
list file management report, 107, 109–

13, 135
list status information, 107, 109–13
lithium back-up battery, 190, 195
lock (L) commands file command, 132
loop_id, 39
looping commands, 28–39

M
M (message) commands file command,

132
M (move pointer) command, 107, 118–

20, 125
Macintosh communications program,

23
main board, 194
memory card

add new record to file, 107, 109
boot file (B), 104, 122, 136
calculate CRC, 124
calculate CRC of file, 108
capabilities, 104, 136
delete file, 107, 114, 132, 134
delete record from file, 107, 115,

116
determine card ID, 108, 121, 122
file management report, 107, 109–

13, 132, 135

file types, 104, 136
format card, 108, 121, 206, 208
identification file (D), 104, 122, 136
indexed file, 149
indexed file (I/H), 104, 115, 122,

125, 136
initialize card, 108
open file, 108, 122
precautions, 143
read program version, 108, 126
remove deleted files, 107, 117, 132,

134
repeat last status byte or data, 108
sequential file (S), 104, 122, 136
status information, 107, 109–13

memory dumping, 51
memory map, 48–50
message (M) commands file command,

132
modem cable, 201, 202, 203, 204
modem communications, 199
modem transfer set up, 200
modulus, 122, 141, 142
monitor mode, 44
monitor mode, reset, 44
monitor program, 7, 191
move pointer, 118–20
move pointer (M) command, 107, 118–

20, 125
move pointer in memory card file, 107,

118–20, 125
multiple data collectors, 7
MXFORMAT utility, 9

N
N (format card) command, 108, 121,

122
nickel-cadmium batteries, 190, 191

O
O (open memory card file) command,

108, 122
open memory card file, 108, 122
open memory card file (O) command,

108, 122

Index 219

operating system P (pass to memory
card) command, 132

operating system software, 7, 14, 23,
59–65, 131, 132
command line, 61
commands, 62–65

Battery (B) command, 62
Clear Data (Z) command, 65
Default Application (D)

command, 62
Go (G) command, 63
Load from Flash (L) command,

63
Lock (L) command, 64
Message (M) command, 64
Pass to Memory Card (P)

command, 64, 105–29
Quit Operating System (Q)

command, 64
Receive (R) command, 64
Reset Memory Card (X)

command, 65
Send (S) command, 65
Set ID (C) command, 62
Time (T) command, 65
Unlock (I) command, 63

origin of data, 173, 178, 180
OS, 7, 23, 59–65, 131

P
Pass to Memory Card (P) command,

105–29, 132
A (add record to memory card file)

command, 107, 109
C (list card info) command, 107,

109–13
D (delete memory card file)

command, 107, 114
F (search for record with keyfield)

command, 107, 115, 116
H (delete record from memory card

file) command, 107, 115, 116
K &1092 (remove deleted files)

command, 107, 117
M (move pointer) command, 107,

118–20, 125

N (format card) command, 108, 121,
122

O (open memory card file)
command, 108, 122

Q (calculate CRC) command, 108,
124

S (search for record) command, 108,
125

V (version number) command, 108,
126

Y (repeat) command, 108, 127
Z (sleep) command, 108, 127

perform search in memory card file,
108, 125

plug-ins, 100–101
program version, 108, 126

Q
Q (calculate CRC) command, 108, 124
quiet mode, DOS, 16

R
R (send file) commands file command,

132, 133
raw data file, 171

data, 173
Header, 172
origin of data, 173
Tailer, 174
TimeWand II-style, 175

read head, 196
read program version, 108, 126
Real-time clock (RTC), 190, 193, 194
record length, maximum, 149
remote modem cable, 203
remove deleted files (K &1092)

command, 107, 117
remove deleted files (K) commands file

command, 132, 134
remove deleted files from memory

card, 107, 117, 134
repeat (Y) command, 108, 127
repeat last byte or data, 127
repeat last status byte or data, 108
reset to monitor mode, 44

220 Index

retrieve file, 132, 134
ROM, 193
run application (G) commands file

command, 132

S
S (get file) commands file command,

132, 134
S (search for record) command, 108,

125
scan board, 196

DuraTrax, 196
LaserLite, 196
LaserLite Mx, 196
LaserLite Pro, 196

scan.s data file, 171
scanpad, 178, 180
search for record (S) command, 108,

125
search for record in memory card file,

115
search for record with key field (F)

command, 107, 115, 116
search for record with key field in

memory card file, 107
send file (R) commands file command,

132, 133
sequential file (S), 104, 122, 136
serial port, 7, 16, 17, 23, 44, 45, 60, 61,

187, 197, 210
set or change unit ID (C) commands

file command, 132
set time (T) commands file command,

132
sleep (Z) command, 108, 127
sleep mode, 108, 127
Source Template, 75–102

code generation directives, 80–88
status code, 128
status information, 107, 109–13
STATUS.TXT file, 16, 17

error codes, 17

T
T (set time) commands file command,

132

Tailer, 171, 174, 179
Timewand.src, 101, 175–80
Theory of Operation, 190–98
Touch Memory button, 180
transfer data, 37

multiple data collectors, 37
transfer data file, 23

U
unit ID, 132
Unlock (I) command, 24, 26, 28, 38,

39, 41, 42, 138
IDs.txt file, 39, 40, 41, 42
loop_id argument, 39, 42

Unlock (I) commands file command,
131, 132

UPC, 178, 180

V
V (version number) command, 108,

126
version number (V) command, 108,

126
Videx Download, 35–36
Videx Download communications

program, 4, 10, 23
Vxbasic.exe, 187
Vxcom, 11–20, 29–31
Vxcom communications program, 4,

10, 130, 133
commands file, 24–39
parameters, 13–19

arguments, 15–19
Vxcrf.exe, 182, 183, 184–88
Vxcrfw.exe, 182, 183

W
wake-up circuit, 194
Windows communications program,

11–20
Windows CRF convert program, 183

Index 221

X
XRAM, 193

Y
Y (repeat) command, 108, 127

Z
Z (clear data) commands file command,

132
Z (sleep) command, 108, 127

